常用数据结构

栈( stack)

栈( stack)是限制插入和删除只能在一个位置上进行的表,该位置是表的末端,叫做栈顶( top)。它是后进先出( LIFO)的。对栈的基本操作只有 push(进栈)和 pop(出栈)两种,前者相当于插入,后者相当于删除最后的元素。

  • 常用数据结构_第1张图片

队列( queue)

队列是一种特殊的线性表,特殊之处在于它只允许在表的前端( front)进行删除操作,而在表的后端( rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头 。

常用数据结构_第2张图片

 

链表( Link)

链表是一种数据结构,和数组同级。比如, Java 中我们使用的 ArrayList,其实现原理是数组。而LinkedList 的实现原理就是链表了。链表在进行循环遍历时效率不高,但是插入和删除时优势明显 。

常用数据结构_第3张图片

 

散列表( Hash Table)

散列表( Hash table,也叫哈希表)是一种查找算法,与链表、树等算法不同的是,散列表算法在查找时不需要进行一系列和关键字(关键字是数据元素中某个数据项的值,用以标识一个数据元素)的比较操作。 

 

散列表算法希望能尽量做到不经过任何比较,通过一次存取就能得到所查找的数据元素,因而必须要在数据元素的存储位置和它的关键字(可用 key 表示)之间建立一个确定的对应关系,使每个关键字和散列表中一个唯一的存储位置相对应。因此在查找时,只要根据这个对应关系找到给定关键字在散列表中的位置即可。这种对应关系被称为散列函数(可用 h(key)表示)。用的构造散列函数的方法有:

( 1) 直接定址法: 取关键字或关键字的某个线性函数值为散列地址。
即: h(key) = key 或 h(key) = a * key + b, 其中 a 和 b 为常数。
( 2) 数字分析法
( 3) 平方取值法: 取关键字平方后的中间几位为散列地址。
( 4) 折叠法: 将关键字分割成位数相同的几部分,然后取这几部分的叠加和作为散列地址。
( 5) 除留余数法: 取关键字被某个不大于散列表表长 m 的数 p 除后所得的余数为散列地址,
即: h(key) = key MOD p p ≤ m
( 6) 随机数法: 选择一个随机函数,取关键字的随机函数值为它的散列地址,
即: h(key) = random(key)

 

排序二叉树

首先如果普通二叉树每个节点满足:左子树所有节点值小于它的根节点值,且右子树所有节点值大于它的根节点值,则这样的二叉树就是排序二叉树。

插入操作

首先要从根节点开始往下找到自己要插入的位置(即新节点的父节点);具体流程是:新节点与当前节点比较,如果相同则表示已经存在且不能再重复插入;如果小于当前节点,则到左子树中寻找,如果左子树为空则当前节点为要找的父节点,新节点插入到当前节点的左子树即可;如果大于当前节点,则到右子树中寻找,如果右子树为空则当前节点为要找的父节点,新节点插入到当前节点的右子树即可。

常用数据结构_第4张图片

 

删除操作

删除操作主要分为三种情况, 即要删除的节点无子节点,要删除的节点只有一个子节点,要删除的节点有两个子节点。
1. 对于要删除的节点无子节点可以直接删除,即让其父节点将该子节点置空即可。
2. 对于要删除的节点只有一个子节点,则替换要删除的节点为其子节点。
3. 对于要删除的节点有两个子节点, 则首先找该节点的替换节点(即右子树中最小的节点),接着替换要删除的节点为替换节点,然后删除替换节点 。

常用数据结构_第5张图片

查询操作

查找操作的主要流程为:先和根节点比较,如果相同就返回, 如果小于根节点则到左子树中递归查找,如果大于根节点则到右子树中递归查找。因此在排序二叉树中可以很容易获取最大(最右最深子节点)和最小(最左最深子节点)值。 

 

 

B-TREE:

B-tree 又叫平衡多路查找树。一棵 m 阶的 B-tree (m 叉树)的特性如下(其中 ceil(x)是一个取上限的函数) :
1. 树中每个结点至多有 m 个孩子;
2. 除根结点和叶子结点外,其它每个结点至少有有 ceil(m / 2)个孩子;
3. 若根结点不是叶子结点,则至少有 2 个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点);
4. 所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部结点或查询失败的结点,实际上这些结点不存在,指向这些结点的指针都为 null);
5. 每个非终端结点中包含有 n 个关键字信息: (n, P0, K1, P1, K2, P2, ......, Kn, Pn)。其中:
a) Ki (i=1...n)为关键字,且关键字按顺序排序 K(i-1)< Ki。
b) Pi 为指向子树根的接点,且指针 P(i-1)指向子树种所有结点的关键字均小于 Ki,但都大于 K(i-1)。
c) 关键字的个数 n 必须满足: ceil(m / 2)-1 <= n <= m-1。

常用数据结构_第6张图片

一棵 m 阶的 B+tree 和 m 阶的 B-tree 的差异在于:
1.有 n 棵子树的结点中含有 n 个关键字; (B-tree 是 n 棵子树有 n-1 个关键字)
2.所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。 (B-tree 的叶子节点并没有包括全部需要查找的信息)
3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。(B-tree 的非终节点也包含需要查找的有效信息) 

常用数据结构_第7张图片

 

 

位图

位图的原理就是用一个 bit 来标识一个数字是否存在,采用一个 bit 来存储一个数据,所以这样可
以大大的节省空间。 bitmap 是很常用的数据结构, 比如用于 Bloom Filter 中;用于无重复整数的
排序等等。 bitmap 通常基于数组来实现,数组中每个元素可以看成是一系列二进制数,所有元素
组成更大的二进制集合。

 

参考: https://www.jianshu.com/p/1ed61b4cca12

参考:https://www.cnblogs.com/polly333/p/4760275.html

 

你可能感兴趣的:(数据结构)