- 集成学习中的多样性密码:量化学习器的多样性
元楼
集成学习学习机器学习人工智能
合集-scikit-learn(69)1.【scikit-learn基础】--概述2023-12-022.【scikit-learn基础】--『数据加载』之玩具数据集2023-12-043.【scikit-learn基础】--『数据加载』之真实数据集2023-12-064.【scikit-learn基础】--『数据加载』之样本生成器2023-12-085.【scikit-learn基础】--『数据
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- 【机器学习|学习笔记】随机森林(Random Forest, RF)详解,附代码。
努力毕业的小土博^_^
机器学习基础算法优质笔记1机器学习学习笔记随机森林人工智能
【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。文章目录【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。前言起源随机子空间法与Bagging的萌芽原理算法机制理论保障发展应用优缺点优点缺点Python实现示例(Scikit-learn)欢迎铁子们点赞、关注、收藏
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- pythonflow_MLflow系列1:MLflow入门教程(Python)
weixin_39872334
pythonflow
这篇教程展示了如何:训练一个线性回归模型将训练代码打包成一个可复用可复现的模型格式将模型部署成一个简单的HTTP服务用于进行预测这篇教程使用的数据来自UCI的红酒质量数据集,主要用于根据红酒的PH值,酸度,残糖量等指标来评估红酒的质量。我们会用到什么?安装MLflow和scikit-learn,推荐两种安装方式:安装MLflow及其依赖:pipinstallmlflow[extras]分别安装ML
- Python 数据分析与机器学习入门 (一):环境搭建与核心库概览
程序员阿超的博客
Pythonpython数据分析机器学习入门教程环境搭建AnacondaJupyterNotebook
Python数据分析与机器学习入门(一):环境搭建与核心库概览本文摘要本文是Python数据分析与机器学习入门系列的第一篇,专为初学者设计。文章首先阐明了Python在数据科学领域的优势,然后手把手指导读者如何使用Anaconda搭建一个无痛、专业的开发环境,并介绍了强大的交互式工具JupyterNotebook的基本操作。最后,简要概览了NumPy、Pandas、Scikit-learn等核心库
- 【零基础学AI】第9讲:机器学习概述
1989
0基础学AI人工智能机器学习pythonnumpydevops开源
本节课你将学到理解什么是机器学习,以及它与传统编程的区别掌握监督学习、无监督学习的基本概念使用scikit-learn完成你的第一个机器学习项目构建一个完整的iris花朵分类器开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseaborn前置知识基本的Python语法(
- Scikit-learn:机器学习的「万能工具箱」
科技林总
DeepSeek学AI人工智能
——三行代码构建AI模型的全栈指南**###**一、诞生背景:让机器学习从实验室走向大众****2010年前的AI困境**:-学术界模型难以工程化-算法实现碎片化(MATLAB/C++主导)-企业应用门槛极高>**破局者**:DavidCournapeau发起*Scikit-learn*项目,**统一算法接口**+**Python简易语法**=机器学习民主化革命---###**二、设计哲学:一致性
- python-拆解sklearn中决策树
weixin_41177022
scikit-learn决策树python机器学习编程
获取树结构实体对scikit-learn中DecisionTreeClassifier/Regressor的实例调用.tree_属性可以得到树结构。参考sklearn的决策树的官方说明sklearn.tree.DecisionTreeClassifier(不过里面说的help(sklearn.tree._tree.Tree)似乎不管用)获取决策树基本信息node总数可以用model.tree_.n
- 第三课:大白话中的scikit-learn安装
顽强卖力
scikit-learnpython机器学习
史上最欢乐的scikit-learn安装指南:从零开始到成功装逼大家好!这节课我们要干一件大事——安装scikit-learn(机器学习界的瑞士军刀)。别担心,就算你是电脑小白,看完这篇也能轻松搞定!我会手把手教你用pip安装、在Windows和Mac上折腾、以及用Anaconda偷懒大法,最后还会教你如何验证是否安装成功(避免装了个寂寞)。废话不多说,Let’sgo!1.什么是scikit-le
- 决策树算法
雨巷码行人
机器学习算法决策树机器学习
文章目录基本概念与原理决策树定义两种理解视角模型构建三要素1.特征选择(1)信息增益(ID3算法)(2)信息增益比(C4.5算法)(3)基尼指数(CART算法)2.决策树生成3.决策树剪枝(1)预剪枝(Pre-pruning)(2)后剪枝(Post-pruning)决策树算法对比CART回归树生成Scikit-learn实现分类树CART决策树-回归树决策树优劣势总结基本概念与原理决策树定义树形结
- 机器学习数据预处理:标签编码LabelEncoder
数字化与智能化
人工智能机器学习机器学习标签编码LabelEncoder
一、什么是标签编码LabelEncoderLabelEncoder是scikit-learn库中的一个预处理工具,用于将分类变量转换为整数标签。它主要用于处理目标变量(也称为标签)或特征变量中的分类数据。假设我们有一组学生的成绩数据,其中一个特征是学生的等级(A、B、C、D、E)。我们可以使用LabelEncoder将这些等级转换为整数标签。LabelEncoder主要用于将分类变量转换为整数标签
- Python 人工智能与数据科学实战
gohacker
python人工智能开发语言
#Python人工智能与数据科学实战##机器学习入门###Scikit-learn基础```pythonfromsklearn.datasetsimportload_irisfromsklearn.model_sel
- 机器学习库scikit-learn的安装
热河路就像捞大黑色信封
Pythonscikit-learnpython机器学习
bg:Windows环境下的,其它的应该也差不多都是通过pip1、打开终端2、输入pipinstallscikit-learn3、验证安装完成:终端输入:python-c"importsklearn;print(sklearn.__version__)"也可以运行代码:importsklearnprint("scikit-learn版本:",sklearn.__version__)
- Python基础应用于电影数据分析实战项目
Lemaden
本文还有配套的精品资源,点击获取简介:本项目“analysis-movie-dataset”旨在使用Python基础技能对电影数据集进行分析。项目通过导入Pandas和Numpy等核心数据处理库,加载和初步了解数据集,进行数据清洗,以及计算统计量和进行可视化分析。此外,将探讨如何利用Matplotlib和Seaborn库创建图表,以及运用Pandas和Scikit-learn库进行更复杂的数据分析
- python中Scikit-learn模块介绍
不会仰游的河马君
pythonpythonscikit-learn开发语言
Scikit-learn是Python中一个开源的机器学习库,它提供了简单高效的工具,用于数据挖掘和数据分析。该库包含了各种分类、回归、聚类算法,以及数据预处理、模型选择、模型评估等功能。Scikit-learn的特点是接口统一、使用简单、运行高效,并且有一个活跃的社区不断维护和更新。它广泛应用于数据科学、机器学习、人工智能等领域。应用和发展趋势Scikit-learn在机器学习和数据科学领域的应
- 图像处理与机器学习项目:特征提取、PCA与分类器评估
pk_xz123456
深度学习仿真模型算法图像处理机器学习人工智能
图像处理与机器学习项目:特征提取、PCA与分类器评估项目概述本项目将完成一个完整的图像处理与机器学习流程,包括数据探索、特征提取、主成分分析(PCA)、分类器实现和评估五个关键步骤。我们将使用Python的OpenCV、scikit-learn和scikit-image库来处理图像数据并实现机器学习算法。importnumpyasnpimportmatplotlib.pyplotaspltimpo
- 【Python】机器学习:Scikit-learn、Statsmodels
机器学习:Scikit-learn、Statsmodels文章目录机器学习:Scikit-learn、Statsmodels1.**Scikit-learn****主要功能****核心模块****常用功能及代码示例**1.**数据预处理**2.**分类算法**3.**回归算法**4.**聚类算法**5.**模型选择**6.**Pipeline**2.**Statsmodels****主要功能***
- 利用 Python 和 scikit - learn 进行分层抽样
Python编程之道
python开发语言ai
利用Python和scikit-learn进行分层抽样关键词:分层抽样、scikit-learn、Python、数据采样、机器学习、数据预处理、统计学摘要:本文深入探讨了分层抽样在数据科学和机器学习中的应用。我们将从统计学基础出发,详细讲解分层抽样的原理、优势以及实现方法。通过Python和scikit-learn库的实际代码示例,展示如何在不同场景下应用分层抽样技术。文章还涵盖了分层抽样的数学模
- NumPy 的入门指南,专为 Python 新手设计,帮助你快速掌握 NumPy 的核心概念和常用函数:
晨曦543210
numpypython开发语言
一、NumPy是什么?NumPy(NumericalPython)是Python中用于科学计算的核心库,专注于高效的多维数组(ndarray)操作。核心优势:提供高性能的数组对象(比Python原生列表快50倍以上)。支持向量化运算(无需编写循环即可批量处理数据)。是众多科学库(如Pandas、Matplotlib、Scikit-learn)的基础。二、为什么需要NumPy?假设要计算两个长度为1
- 《打造你的第一个数据挖掘工具:用 scikit-learn 快速原型开发与高效特征工程指南》
清水白石008
pythonPython题库数据挖掘scikit-learn人工智能python
《打造你的第一个数据挖掘工具:用scikit-learn快速原型开发与高效特征工程指南》一、引言:当Python遇上数据挖掘从电商推荐、医疗预测,到工业预警与用户画像,数据挖掘已成为现代智能系统的核心。Python作为数据科学领域的通用语言,其简洁优雅的语法与丰富的库生态让从原型构想到落地部署变得前所未有地高效。在众多库中,scikit-learn是构建数据挖掘系统不可或缺的基石——它让你专注于逻
- Python 数据分析:NumPy 库的使用
小张在编程
python数据分析numpy
引言:为什么说NumPy是Python数据分析的“基石”?在Python数据分析领域,有这样一句话:“没有NumPy,就没有Pandas、Matplotlib和Scikit-learn”。作为Python科学计算的核心库,NumPy(NumericalPython)凭借高效的多维数组(ndarray)和向量化运算能力,成为了所有数据分析工具的底层支撑。无论是处理百万级别的销售数据,还是实现复杂的机
- 突然无法调用scikit-learn、xgboost
RockyRich
pythonscikit-learnpython机器学习
遇到的错误包含:File"",line3,inFile"/usr/anaconda3/envs/py37/lib/python3.7/site-packages/sklearn/__init__.py",line81,infrom.import__check_build#noqa:F401File"/usr/anaconda3/envs/py37/lib/python3.7/site-packag
- Scikit-learn:开启量化价值投资的新征程
量化价值投资入门到精通
scikit-learnpython机器学习ai
Scikit-learn:开启量化价值投资的新征程关键词:Scikit-learn、量化投资、价值投资、机器学习、特征工程、投资组合优化、金融数据分析摘要:本文深入探讨了如何利用Scikit-learn这一强大的Python机器学习库来构建量化价值投资系统。文章从基础概念出发,详细介绍了价值投资的量化实现方法,包括数据获取与处理、特征工程、模型构建与优化等关键环节。通过实际案例展示了如何使用机器学
- AI 十三、Python中,项目实战:企业知识库构建二
十方来财
ai人工智能python开发语言
进一步优化和扩展企业知识库系统,可以通过以下几个方面来提升系统的功能和性能:1.文本分类与标签生成文本分类和标签生成是提高文档检索效率的重要手段。通过机器学习模型(如scikit-learn或spaCy)对文档进行分类,我们可以自动为文档生成相关标签,并为后续的检索提供支持。1.1使用scikit-learn进行文本分类我们可以使用scikit-learn库中的TfidfVectorizer和Lo
- 使用Python和Scikit-Learn实现机器学习模型调优
Blossom.118
机器学习与人工智能机器学习人工智能scikit-learn开发语言目标检测python深度学习
在机器学习项目中,模型的性能往往取决于多个因素,其中模型的超参数(hyperparameters)起着关键作用。超参数是模型在训练之前需要设置的参数,例如决策树的深度、KNN的邻居数等。合理地选择超参数可以显著提升模型的性能。Scikit-Learn是一个功能强大的机器学习库,它提供了多种工具来帮助我们进行模型调优。本文将通过一个具体的例子,介绍如何使用Scikit-Learn进行模型调优。一、环
- sklearn 和 pytorch tensorflow什么关系
MYH516
sklearnpytorchtensorflow
Scikit-learn、PyTorch和TensorFlow是Python生态中互补的机器学习库,但它们的定位和应用场景有明显区别:核心定位对比库主要定位抽象层级核心优势典型场景Scikit-learn传统机器学习(浅层模型)高简单易用、丰富的工具链数据预处理、分类/回归、特征工程PyTorch深度学习(动态计算图)中低灵活、易于调试、学术友好研究原型、自然语言处理、计算机视觉TensorFlo
- scikit-learn机器学习
kaka_R-Py
机器学习scikit-learnpython
#同时添加如下代码,这样每次环境(kernel)启动的时候只要运行下方代码即可:#Alsoaddthefollowingcode,#sothateverytimetheenvironment(kernel)starts,#justrunthefollowingcode:importsyssys.path.append('/home/aistudio/external-libraries')机器学习
- 08_预处理与缩放
白杆杆红伞伞
machinelearning机器学习支持向量机人工智能
描述机器学习的一些算法(如神经网络、SVM)对数据缩放非常敏感。通常的做法是对特征进行调节,使数据表示更适合与这些算法。scikit-learn中提供了4中数据缩放方法:StandardScaler:确保每个特征平均值为0,方差为1,使所有特征都位于同一量级RobusScaler:工作原理与StandardScaler类似,确保每个特性的统计属性都位于同一范围MinMaxScaler:移动数据,使
- python怎么训练模型_python svm 怎么训练模型
weixin_39529903
python怎么训练模型
展开全部支持2113向量机SVM(SupportVectorMachine)是有监督的分类预测模型,本篇文章5261使用机器学习库scikit-learn中的手写数字数4102据集介绍使用Python对SVM模型进行1653训练并对手写数字进行识别的过程。准备工作手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb