- 【大模型应用开发 动手做AI Agent】LlamaIndex和基于RAG的AI开发
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录【大模型应用开发动手做AIAgent】LlamaIndex和基于RAG的AI开发1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系LlamaIndexRAG联系3.核心算法原理&具体操作步骤3.1算法原理概述LlamaIndexRAG3.2算法步骤详解LlamaIndexRAG3.3算法优缺点LlamaIndexRAG3.4算法应用领域4.数学模型和公
- 5 个遥遥领先的大模型 RAG 工具
机器学习社区
大模型大模型算法人工智能RAG多模态大模型语言模型
想象一下拥有一种超能力,让你能够对任何问题或提示生成类似人类的回答,同时还能够利用庞大的外部知识库确保准确性和相关性。这不是科幻小说,这就是检索增强生成(RAG)的力量。在本文中,我们将介绍五大遥遥领先的RAG工具或库:LangChain、LlamaIndex、Haystack、RAGatouille和EmbedChain。LangChainLangChain是一个全面的开源框架,用于开发大型语言
- RAG技术架构深度解析(非常详细)零基础入门到精通,收藏这一篇就够了
Python_chichi
程序员互联网大模型架构人工智能机器学习语音识别
本文主要介绍了RAG技术架构在AI编程中的创新应用及其面临的挑战。文章深入分析了RAG技术架构的兼容性、实时性和智能化水平等方面的问题,并提出了相应的改进措施,如加强标准化建设、引入实时数据处理技术和先进算法模型。同时,文章预测了RAG技术架构在智能化水平持续提升、跨领域融合加速以及数据隐私与安全保障方面的未来发展趋势。最后,文章回顾了RAG技术在AI编程领域的应用成果,并展望了其广阔的应用前景,
- RAG系列(二):如何优化索引
东临碣石82
kotlinandroid开发语言
上篇文章总览了RAG的各个环节,这篇我们接着讲第一个环节也就是“索引”环节如何做优化。具体细节“人人都是产品经理”的这篇文章里有非常详细的说明,不过我对微软体系搜索优化了解的多些,看到过的一些优化方法这里没有提到,比如微软的AISearch还有DataverseSemanticSearch里用到一些优化方法这里就没看到。知识搜索是一个可以扣出很多细节的领域,这里做个备考、补充学习过程中的一些体会并
- 容器化检索增强框架(R2R)
deepdata_cn
RAGRAG
R2RbySciPhi-AI是一个专门的RAG框架,专注于通过迭代细化来改进检索过程。主要特点包括实现新颖的检索算法,支持多步检索过程,与各种嵌入模型和向量存储集成,以及用于分析和可视化检索性能的工具。适合有兴趣突破检索技术界限的开发人员和研究人员,特别是在需要创新检索方法的场景。具有RESTfulAPI的容器化检索增强一代(RAG)。具有生产就绪型功能,包括多模式内容摄取、混合搜索功能、可配置的
- 高效向量搜索RAG解决方案(Canopy)
deepdata_cn
RAGRAG
Canopy利用Pinecone在高效向量搜索方面的专业知识,提供强大且可扩展的RAG(Retrieval-AugmentedGeneration)解决方案。包括与Pinecone向量数据库的紧密集成,支持流处理和实时更新,先进的查询处理和重新排序功能,以及管理知识库和版本控制的工具。一、基本原理1.向量嵌入:Canopy首先会将文本数据转换为向量表示,通常使用预训练的语言模型等技术,将文本映射到
- 用 Neo4j GraphRAG 工具开启你的智能应用之旅
步子哥
AGI通用人工智能neo4j人工智能
在这个人工智能飞速发展的时代,Neo4j带来了一项令人激动的创新——GraphRAG生态系统工具。这组开源工具为开发人员提供了一个全新的途径,以构建基于知识图谱的智能应用,让机器更好地理解和回应我们的查询。接下来,让我们一起探索这些工具如何帮助我们构建更智能、更准确的应用。什么是GraphRAG?GraphRAG是一种结合了检索增强生成(RAG)技术和知识图谱的解决方案。它不仅解决了大型语言模型常
- 【llm对话系统】大模型RAG之基本逻辑
kakaZhui
人工智能数据库AIGCchatgptllama
大模型RAG之基本逻辑:让LLM更精准地回答你的问题(降低幻觉)你是否遇到过这样的情况:当你向LLM提问时,它可能会给出一些“一本正经胡说八道”的答案,或者无法回答一些特定领域的专业问题?为了解决这个问题,RAG(Retrieval-AugmentedGeneration,检索增强生成)技术应运而生。RAG将检索(Retrieval)和生成(Generation)结合起来,让LLM在回答问题时,能
- 深度学习-70-大语言模型LLM之基于大模型LLM与检索增强技术RAG的智能知识库
皮皮冰燃
深度学习人工智能深度学习语言模型
文章目录1RAG出现的背景2搭建过程2.1数据收集2.2数据处理2.2.1数据清洗与预处理2.2.2文本分块2.2.3微调数据格式统一2.3建立向量索引2.4大模型选择与微调3开源知识库项目3.1FastGPT3.2AnythingLLM3.3LangChain-Chatchat4商业化解决方案4.1百度智能云+千帆大模型知识库4.2阿里云PAI+向量检索5参考附录1RAG出现的背景自从2022年
- 开发者实战 | OpenVINO™ 协同 Semantic Kernel:优化大模型应用性能新路径
OpenVINO 中文社区
openvino人工智能
点击蓝字关注我们,让开发变得更有趣作者:杨亦诚作为主要面向RAG任务方向的框架,SemanticKernel可以简化大模型应用开发过程,而在RAG任务中最常用的深度学习模型就是Embedding和Textcompletion,分别实现文本的语义向量化和文本生成,因此本文主要会分享如何在SemanticKernel中调用OpenVINO™runtime部署Embedding和Textcompleti
- RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(Advanced RAG✨)
汀、人工智能
LLM工业级落地实践人工智能AIAgentRAG知识问答智能问答
RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(AdvancedRAG✨)1.RAG简介词汇解释说明embedding嵌入(embedding)是指将高维数据映射为低维表示的过程。在机器学习和自然语言处理中,嵌入通常用于将离散的符号或对象表示为连续的向量空间中的点。在自然语言处理中,词嵌入(wordembedding)是一种常见的技术,它将单词映射到实数向量,以便
- 支持生成式 AI:聊天与文档检索的结合
drebander
AI编程人工智能springAI
生成式AI已成为现代应用的重要组成部分,从实时聊天到文档检索,再到智能问答系统,其核心是能够理解上下文并生成有用的回答。在生成式AI中,聊天会话内存(ChatConversationMemory)和检索增强生成(RAG,RetrievalAugmentedGeneration)是两个关键功能,分别解决了上下文管理和大规模文档检索问题。本文将介绍SpringAI如何支持这两个功能,并通过实际应用场景
- 【人工智能时代】- 开源向量数据库比较:Chroma, Milvus, Faiss,Weaviate
xiaoli8748_软件开发
人工智能时代人工智能开源数据库
语义搜索和检索增强生成(RAG)正在彻底改变我们的在线交互方式。实现这些突破性进展的支柱就是向量数据库。选择正确的向量数据库能是一项艰巨的任务。本文为你提供四个重要的开源向量数据库之间的全面比较,希望你能够选择出最符合自己特定需求的数据库。什么是向量数据库?向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到
- 再分享API形式调用Dify项目应用
福安德信息科技
大模型python人工智能大模型llmdify
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。RAGOnMedicalKG:大模型结合知识图谱的RAG实现DSPy:变革式大模型应用开发最简明的Few-shotPrompt指南SemanticKernel:微软大模型开发框架——LangChain替代对话大模型Prompt是否需要
- 基于Langchain框架,采用Qwen2.5大模型,搭建自己的Agent,ReACT效果比RAG好
张登杰踩
langchainpython人工智能语言模型
最近在做RAG,调研后发现ReACT好像更具有说服力,对最终结果的解释也更加合理。举个例子,我扔给大模型这样一个问题:15的平方是多少?另外,法国的首都是哪里?采用ReACT的运行结果如下:>EnteringnewAgentExecutorchain...我需要先计算15的平方,然后搜索法国的首都。Action:平方计算器ActionInput:"15"Observation:15的平方等于225
- LLM幻觉(Hallucination)缓解技术综述与展望
大模型之路
大模型(LLM)RAGRAG检索增强生成LLMLLM幻觉Hallucination
LLMs中的幻觉问题(LLM幻觉:现象剖析、影响与应对策略)对其可靠性与实用性构成了严重威胁。幻觉现象表现为模型生成的内容与事实严重不符,在医疗、金融、法律等对准确性要求极高的关键领域,可能引发误导性后果,因此,探寻有效的幻觉缓解技术成为当前人工智能研究的关键任务。一、RAG:基础但有缺陷的缓解手段检索增强生成(RAG)作为缓解幻觉的常用方法(RAG(Retrieval-AugmentedGene
- 使用 pgvector 实现 PostgreSQL 语义搜索和 RAG:完整指南
m0_74825260
面试学习路线阿里巴巴postgresql数据库
使用pgvector实现PostgreSQL语义搜索和RAG:完整指南1.引言在当今的数据驱动世界中,能够高效地搜索和检索相关信息变得越来越重要。传统的关系型数据库虽然在结构化数据管理方面表现出色,但在处理非结构化数据和语义搜索时往往力不从心。本文将介绍如何使用pgvector扩展来增强PostgreSQL数据库,实现语义搜索和检索增强生成(RAG)功能,从而大大提升数据检索的效率和准确性。2.p
- 使用 pgvector 将 PostgreSQL 与语义搜索/RAG 集成的教程
azzxcvhj
postgresql人工智能数据库python
技术背景介绍在大语言模型(LLMs)和语义搜索的兴起中,结合结构化的关系型数据库(如PostgreSQL)进行增强型查询变得越来越有价值。这种方法常用于RAG(Retrieval-AugmentedGeneration)场景,例如FAQ问答、文档检索、推荐系统等。pgvector是用于PostgreSQL的一个扩展,它支持稠密向量的存储和操作。通过pgvector,可以将嵌入向量直接存储在数据库中
- 2024实力进阶:百度智能云千帆AppBuilder年度盘点
2024,AI浪潮奔涌,百度智能云千帆AppBuilder持续升级,以AI原生之力,革新企业级大模型应用开发范式,重塑行业生态!企业级RAG实现重大突破,支持无限存储,高并发秒速响应,且能实现随业务弹性扩缩容。此外RAG支持一键联网,无缝连接百度搜索、文库、百科等全网最新资源,资讯获取实时更新,全面且精准。多语言RAG为企业开拓全球市场保驾护航;强图表解析功能让报告与报表分析更精准高效。企业级Ag
- 构建企业私有RAG大模型: (可商用)Qwen2.5开源模型vLLM部署及示例
小敢摘葡萄
开源人工智能机器学习神经网络智能手机交互
在企业真实场景中,开发接口通常需要针对具体需求进行定制化处理,以更好地适配RAG应用系统的实际需求。相关代码后续会以Git仓库的形式分享。本章将继续探讨开源大模型的部署。在RAG系统的架构中,大模型扮演着至关重要的角色,是整个流程的“最后一环”。知识库的构建、检索,以及知识的排序与整合,都是为了为大模型提供准确、完整的上下文知识。这种知识支撑可以显著降低大模型生成过程中的幻觉问题(如生成不可靠或错
- 语义缓存:提升 RAG 性能的关键策略
大模型之路
RAG缓存RAG检索增强生成LLM大模型
检索增强生成(Retrieval-AugmentedGeneration,简称RAG)(RAG综述:探索检索增强生成技术的多样性与代码实践)技术已经成为构建高性能AI模型的重要基石。RAG通过结合先进的语言模型与外部知识检索,能够生成既准确又富含上下文的响应。然而,尽管RAG功能强大,但它也伴随着一系列挑战,如高令牌消耗(tokenconsumption)、运营成本的增加以及响应时间的延长。这些问
- 实战LangChain(七):集成CrewAI——实现多代理协作
matianlongg
深度学习langchain
实战LangChain(七):集成CrewAI——实现多代理协作实战LangChain(一):构建您的第一个聊天机器人_langchai机器人实战LangChain(二):探索RAG——为聊天机器人注入知识-CSDN博客实战LangChain(三):深化交互——利用Neo4j提升聊天机器人的对话能力实战LangChain(四):LangGraph入门——状态管理与基础结构实战LangChain(五
- 使用 GPT-crawler 构建 RAG 应用的完整指南
sagvWSRJHMNEB
gpt爬虫人工智能python
随着生成式AI技术的迅猛发展,如何高效地利用GPT模型进行信息抽取和知识增强(RAG:Retrieval-AugmentedGeneration)成为了开发者关注的焦点。本文将深入探讨如何使用gpt-crawler工具来抓取网页内容并在LangChain项目中实现RAG应用。技术背景介绍在生成式AI应用中,RAG是一种结合信息检索和生成技术的方法。通过将外部知识融入到生成模型中,RAG能够在特定领
- 使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南
m0_57781768
langchain
使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南近年来,随着大语言模型(LLMs)的迅猛发展,基于LLM的复杂问答系统(Q&AChatbot)逐渐成为人工智能领域的热门应用之一。这类应用程序可以基于特定的文本信息源回答用户提出的问题,在实际应用中非常有价值。而实现这些强大功能的核心技术之一,便是检索增强生成(RetrievalAugmentedGeneration,RAG
- 使用RAG-Chroma与OpenAI构建高效问答系统
srudfktuffk
人工智能python
在AI驱动的应用场景中,检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种强大的技术,可以提升问答系统的精度和效能。在这篇文章中,我们将深入探讨如何使用Chroma与OpenAI结合,构建一个基于RAG的问答系统。技术背景介绍RAG是一种结合信息检索(IR)和自然语言生成(NLG)的技术。它通过先检索与问题相关的信息,然后生成答案,提高了问答系统的准确性和相关
- 利用Ollama和OpenAI实现多查询RAG检索
jkgSFS
前端javascript开发语言python
在这篇文章中,我们将探讨如何结合使用Ollama和OpenAI的多查询检索技术(RAG)来增强信息检索的准确性和效率。多查询检索器是一种查询转换的例子,它基于用户的输入查询生成多个不同视角的查询。对于每个查询,系统检索一组相关文档,并合并所有查询的独特联合体以进行答案合成。技术背景介绍RAG(Retrieval-AugmentedGeneration)是一种结合检索与生成的技术,它通过在生成答案之
- (RAG系列) FastGPT工作流的http请求模块使用
是小白_鸭
RAG语言模型ai自然语言处理
FastGPT工作流的http请求模块使用版本使用说明代码模板版本fastgptv4.8.10使用说明question接收传入的变量,msg集合则是包含返回的变量,fastgpt的工作流的http请求模块填写url->http://xxxx:5000/deal_response代码模板fromflaskimportFlask,requestimportjsonimportreapp=Flask(_
- Grape-RAG
disgare
AIai
Grape-RAG传统RAG的局限性图的优点用知识图谱来呈现数据关系GraphRAG传统RAG的局限性经典的RAG架构以向量数据库(VectorDB)为核心来检索语义相似性上下文,让大语言模型(LLM)不需要重新训练就能够获取最新的知识,其工作流如下图所示:这一架构目前广泛应用于各类AI业务场景中,例如问答机器人、智能客服、私域知识库检索等等。虽然RAG通过知识增强一定程度上缓解了LLM幻觉问题,
- 搭建个人AI知识库:RAG与本地模型实践指南
ai开发知识库
引言你是否想过拥有一个私人订制的AI助手,能够随时为你提供最个性化的信息?本文将带你一步步搭建一个基于本地模型和RAG技术的个人知识库。搭建本地模型环境os:archlinux内存:32gcpu:6核12线程python:3.12.7docker27.3.1+docker-compose向量库:milvus2.4.13+attu2.4(客户端)ollamapacman-Sollamasystemc
- 构建知识图谱:从文本到结构化数据的转化
sagvWSRJHMNEB
知识图谱人工智能python
技术背景介绍知识图谱是一种将信息表示为实体及其相互关系的结构化数据模型,广泛用于提高数据检索和决策支持的质量。特别是在基于知识的检索增强生成(RAG)应用中,通过将非结构化文本转化为知识图谱,可以显著提升系统对复杂关系的理解和导航能力。核心原理解析构建知识图谱的核心步骤包括:信息提取和数据库存储。从文本中提取结构化信息主要依赖于大语言模型(LLM),如OpenAI的GPT-4,其能力在于解析和分类
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S