- 【RAG 论文】Program-of-Thoughts(PoT)提示:让 LLM 生成 Python 代码来解决复杂的数字计算问题
yubinCloud
LLMResearch自然语言处理人工智能语言模型算法
论文:ProgramofThoughtsPrompting:DisentanglingComputationfromReasoningforNumericalReasoningTasks⭐⭐⭐⭐TMLR2023Code:Program-of-Thoughts|GitHub论文速读文章提出了PoTPrompting方法,PoT可以看作是CoT(Chain-of-Thoughts)的改进,该方法通过生
- 打造RAG系统:四大向量数据库Milvus、Faiss、Elasticsearch、Chroma 全面对比与选型指南
橙子小哥的代码世界
数据库数据库milvusfaiss人工智能深度学习神经网络elasticsearch
在当今信息爆炸的时代,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)系统已成为自然语言处理(NLP)领域的重要工具。RAG系统通过结合生成模型和信息检索技术,能够在大规模数据中高效地获取相关信息,生成更为精准和有针对性的内容。而在构建RAG系统时,选择合适的向量数据库是确保系统性能和可扩展性的关键一步。本文将深入对比四大主流向量数据库——Milvus、Fai
- AI学习指南RAG篇(4)-RAG的工作流程
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG的工作流程1.检索(Retrieval)1.1检索的目标1.2检索的实现1.3示例代码1.4输出示例2.增强(Augmentation)2.1增强的目标2.2增强的实现2.3示例代码2.4输出示例3.生成(Generation)3.1生成的目标3.2生成的实现3.3示例代码3.4输出示例三、总结一、引言RAG(Retrieval-AugmentedGeneration,检
- 大模型好书推荐 -挖到宝了,500页RAG神书几乎把RAG讲得透透的
脱泥不tony
人工智能语言模型自然语言处理LLMRAG大模型入门大模型
《基于大模型的RAG应用开发与优化——构建企业级LLM应用》是一本专注于RAG(Retrieval-AugmentedGeneration,检索增强生成)技术应用的书籍。该书不仅为读者提供了全面深入的RAG技术知识,还注重实践性和可操作性,帮助读者快速掌握构建企业级LLM应用的能力。一、本书推荐理由《基于大模型的RAG应用开发与优化——构建企业级LLM应用》是一本深度与广度并重、实践导向性强、紧
- 大模型系列——Spring AI Advisor 指南
猫猫姐
大模型人工智能springjava
大模型系列——SpringAIAdvisor指南1、概览AI驱动的应用已成为我们的新现实。我们正在广泛实现各种RAG应用和提示API,并使用LLM创建令人印象深刻的项目。借助SpringAI,我们可以更快、更稳定地完成这些任务。本文将带你了解SpringAIAdvisor这一功能,它可以为我们处理各种常规任务。2、SpringAIAdvisor是什么?Advisors是在AI应用程序中处理请求和响
- 大模型与图数据库RAG通俗流程拆解
gallonyin
产品笔记AI知识图谱
图构建(略)neo4j、tugraph等均可,不影响GraphRAG核心框架模型向量化模型bce-embedding-base_v1重排序模型bce-reranker-base_v1大语言模型Qwen/Qwen2.5-32B-Instruct图数据库tugraph索引faiss核心流程这个调用链日志展示了一个完整的问答系统处理用户输入“百草园里有什么”的过程。本项目使用和参考了开源项目茴香豆。以下
- Mistral 发布 Mistral OCR,号称「世界上最好的 OCR 模型」
自不量力的A同学
ocr
Mistral发布的MistralOCR号称“世界上最好的OCR模型”,以下是对它的详细介绍:产品概述MistralOCR是一种光学字符识别API,以图像和PDF作为输入,可从有序交错的文本和图像中提取内容,能理解文档的每个元素,包括媒体、文本、表格、公式等,可与RAG系统结合,处理多模式文档。核心优势顶尖的复杂文档理解能力:可精准识别科学论文、技术文献中的图表、公式(含LaTeX)、表格及混合排
- 《DeepSeek+Langchain落地实操:RAG知识增强检索和智能体实战开发》
AI周红伟
langchain
大数据与人工智能实战专家—周红伟老师法国科学院数据算法博士/曾任阿里人工智能专家/曾任马上消费金融风控负责人课程背景LangChain是一项旨在赋能开发人员利用语言模型构建端到端应用程序的强大框架。它的设计理念在于简化和加速利用大型语言模型(LLM)和对话模型构建应用程序的过程。这个框架提供了一套全面的工具、组件和接口,旨在简化基于大型语言模型和对话模型的应用程序开发过程。LangChain本质上
- 【简单记录】RAG与LLM的交互流程
努力努力再努力呐
RAGLLMRAGLLM
一、流程名称该流程旨在通过结合用户查询、相关知识源和大型语言模型(LLM),生成一个增强上下文的文本响应。二、流程步骤查询输入用户输入一个具体的查询(Query),这个查询可能是一个问题、一个请求或是一个需要解释的概念。搜索相关知识源系统接收查询后,开始在预先定义或配置的知识源(KnowledgeInformationSources)中搜索与查询相关的信息。这些知识源可能包括数据库、在线文档、网站
- Qwen1.5-7B-实现RAG应用详细步骤
大数据追光猿
大模型数据库AI编程语言模型人工智能深度学习
1.准备工作1.1安装依赖确保你的环境中安装了以下工具和库:Python:建议使用Python3.8或更高版本。PyTorch:用于运行深度学习模型。Transformers:HuggingFace提供的库,支持加载和运行预训练模型。FAISS:用于向量检索的高效库。GPTQ支持库:如auto-gptq或gptqmodel。安装命令运行以下命令安装所需的Python包:pipinstalltorc
- 腾讯云大模型知识引擎转为本地化知识引擎+DeepSeek
Java_微尘
腾讯云langchainpromptllama
文章目录1、为什么需要本地化部署大模型tokens资源包知识库容量搜索服务包2、这里的底层技术-RAG3、为什么选择DeepSeek+011ama+AnythingLLM4、部署步骤1、ollama本地化部署DeepSeekR12、下载并运行DeepSeek模型3、部署AnythingLLM1)下载安装2)配置模型3)创建知识库4、使用DeepSeek官方API(可选)5、使用方法调用Anythi
- 大模型RAG入门到实战基础教程(非常详细),大模型RAG入门到精通,收藏这一篇就够了!
AI程序猿人
人工智能AI大模型AIRAGLLM大语言模型大模型入门
写在前面大模型(LargeLanguageModel,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分域时,通用大模型就会面临专业知识不足的问题。相对于成本昂贵的“PostTrain”或“SFT”,基于RAG的技术方案往成为一种更优选择。本文从RAG架构入手,详细介绍相关技术细节,并附上一份实践案例。LLM的问题尽管LLM拥有令人印象深刻的能力,但是它们还面临着一些问题和挑战:幻觉
- CentOS 7中安装Dify
laolitou_1024
CentOSDockerAIcentos运维人工智能
Dify是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流、RAG管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。尤其是我们本地部署DeepSeek等大模型时,会需要用到Dify来帮我们快捷的开发和应用。大家可以参考学习它的中文文档:https://github.com/langgenius/dify/blob/main/README_CN.md一、系统要求在安装D
- 为什么「上下文检索」是提升 RAG 系统问答准确度的关键?
后端人工智能数据库
为什么明明答案就在知识库里,但AI却无法准确回答?原因之一是由于RAG系统处理文档的方式。“文档切块”步骤导致丢失语义缺失、语义歧义或全局结构缺失,AI可能只看到了“局部信息”,却忽略了“全局意义”。这正印证了莫拉维克悖论——对人类而言是基于直觉的语义衔接,对AI却是一个需要复杂计算的挑战。针对这一问题,庖丁研究团队推出“上下文检索技术”——突破性地让AI通过结构解析和语义重组跨越文档碎片,让AI
- 具有自主规划与决策能力的 RAG 工作全面解析
weixin_40941102
人工智能机器学习大数据
简介RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种将信息检索与生成模型相结合的技术,广泛应用于需要外部知识支持的AI任务。近年来,随着自主AI代理(Agent)的引入,部分RAG系统进化出自主规划和决策能力,能够动态优化检索策略、迭代推理并处理复杂任务。本文将深入探讨这些RAG工作的技术原理、实现方式、工具支持以及在客户支持、医疗保健、金融、工业等领域的具
- RAG 检索增强生成:技术详解与应用展望
君君学姐
RAG检索增强生成
RAG检索增强生成:技术详解与应用展望一、引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了前所未有的变革。其中,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)作为一种新兴的技术框架,正逐渐成为大模型应用中的热门选择。RAG通过结合信息检索(IR)和自然语言生成(NLG)的能力,旨在提升模型在回答问题、生成文本等任务中的准确性和可靠性。本文将深
- 【大模型系列篇】Vanna-ai基于检索增强(RAG)的sql生成框架
木亦汐丫
大模型语言模型sqlagiai数据库人工智能embedding
简介Vanna是基于检索增强(RAG)的sql生成框架Vanna使用一种称为LLM(大型语言模型)的生成式人工智能。简而言之,这些模型是在大量数据(包括一堆在线可用的SQL查询)上进行训练的,并通过预测响应提示中最有可能的下一个单词或“标记”来工作。Vanna优化了提示(通过向量数据库使用嵌入搜索)并微调LLM模型以生成更好的SQL。Vanna可以使用和试验许多不同的LLM,以获得最准确的结果。V
- indexify开源程序包、适用于数据密集型生成式 AI 应用的实时服务引擎、提取和索引 PDF 文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图谱 RAG 和问答
2301_78755287
pdf数据结构算法深度优先逻辑回归宽度优先开源
一、软件介绍文末提供下载Indexify简化了构建和提供持久的多阶段数据密集型工作流的过程,并将其作为HTTPAPI或Python远程API公开。Indexify是开源核心计算引擎,为Tensorlake的无服务器工作流引擎提供支持,用于处理非结构化数据。Indexify是一个多功能的数据处理框架,适用于各种使用案例,包括:提取和索引PDF文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图
- RAG组件:向量数据库(Milvus)
CITY_OF_MO_GY
milvus人工智能
在当前大模型盛行的时代,大模型的垂类微调、优化成为产业落地、行业应用的关键;RAG技术应运而生,主要解决大模型对专业知识、实效性知识欠缺的问题;RAG的核心工作逻辑是将专业知识、实效知识等大模型欠缺的知识进行收集、打包、保存为一个知识库,在用到该部分知识的时候,可以通过检索关键信息,将知识库內对应知识片段进行返回,再整合为一个结构化的prompt(提示词)输入给大模型,这样以来,大模型就可以结合这
- RAG检索增强:知识图谱赋能的高效问答系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着互联网和信息技术的飞速发展,人们获取信息的方式和途径也发生了巨大的变化。传统的搜索引擎已经无法满足用户对于更精准、更个性化、更智能的信息获取需求。问答系统作为一种能够直接回答用户问题的智能系统,应运而生,并逐渐成为信息检索领域的研究热点。早期的问答系统主要基于模板匹配和关键词匹配等方法,其回答准确率和效率都比较低。近年来,随着深度学习技术的兴起,基于深度学习的问答系统取得了显著的进
- 2万字长文,九篇论文读懂大语言模型的前世今生
人工智能
2万字长文,九篇论文读懂大语言模型的前世今生友情提示:这是一篇2W字长文,但我保证,它绝对值得一读!如果感兴趣的话,感谢关注,点赞转发在看收藏,五键四连,谢谢~更多LLM架构文章:LLM架构专栏近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一4
- Text2SQL之Vanna优化
ToTensor
大模型通关打怪之旅Text2SQL深度学习人工智能LLMpython
文章目录前言一、优化方向二、干就完了一次性生成多个Question-SQL对先生成一个问题,再根据DDL和业务数据生成SQL总结前言前阵子写了篇Text2SQL的简单介绍,发现其也是RAG只会,写下了Text2SQL之不装了,我也是RAG最近也一直在做Text2SQL的优化,于是把自己的一些心得,总结于这篇文章。一、优化方向既然本质是RAG,那顺着RAG的优化方向走,准没错。文档增强:对文档进行摘
- Search-o1:智体搜索增强的大型推理模型
三谷秋水
机器学习大模型人工智能人工智能深度学习机器学习
25年1月来自人大和清华的论文“Search-o1:AgenticSearch-EnhancedLargeReasoningModels”。大型推理模型(LRM)(例如OpenAI-o1)已通过大规模强化学习展示长步推理能力。然而,它们的扩展推理过程通常会受到知识不足的影响,从而导致频繁出现不确定性和潜在错误。为了解决这一限制,引入Search-o1,这是一个使用智体检索增强生成(RAG)机制和用
- 【AI论文】DeepSolution:通过基于树的探索和双点思维促进复杂的工程解决方案设计
东临碣石82
人工智能
摘要:为复杂的工程挑战设计解决方案在人类生产活动中至关重要。然而,检索增强生成(RAG)领域之前的研究并没有充分解决与复杂工程解决方案设计相关的任务。为了填补这一空白,我们引入了一个新的基准,SolutionBench,来评估一个系统为具有多个复杂约束的工程问题生成完整和可行解决方案的能力。为了进一步推进复杂工程解决方案的设计,我们提出了一种新的系统SolutionRAG,该系统利用基于树的探索和
- RagFlow专题四、RagFlow 代码实战:基于通义千问(百炼平台)的检索增强生成(RAG)实现
伯牙碎琴
大模型RagFlowRAG检索增强
RagFlow代码实战:基于通义千问(百炼平台)的检索增强生成(RAG)实现在本篇文章中,我们将从代码实战的角度,讲解如何使用RagFlow结合通义千问(百炼平台API)进行检索增强生成(RAG),实现一个完整的AI检索+生成应用。1.环境搭建在本次代码实战中,我们需要完成以下准备工作:安装Python运行环境安装依赖库(向量数据库+检索库+通义千问APISDK)配置API密钥搭建RagFlow基
- dify、open-webui、chatbox 对比
dushky
语言模型aiAI编程
Dify、Open-WebUI和Chatbox是当前主流的开源LLM应用工具,但在功能定位、技术架构和适用场景上有显著差异。以下是三者的对比分析:一、核心定位与功能特性维度DifyOpen-WebUIChatbox核心定位企业级AI应用开发平台轻量级LLM交互界面个人对话式AI工具核心功能可视化工作流编排、多模型串联、RAG、PromptIDE多模型切换、离线运行、插件扩展多模型对话、Markdo
- 【Weaviate RAG】OpenAI+Weaviate RAG实践
星星点点洲
向量数据库AIGC
检索引擎主要用于通过OpenAIAPI和向量数据库进行查询和生成响应。主要功能包括:生成响应:使用OpenAI的GPT-3.5模型生成流式响应。混合检索:结合向量和关键词检索,获取相关文档块,并通过OpenAI生成最终响应。OpenAI查询:根据查询字符串和聊天历史,生成更复杂的查询并调用OpenAIAPI。文档检索:根据ID或查询字符串检索单个或多个文档。控制流图flowchartTDA[开始]
- 【四.RAG技术与应用】【9.向量数据库:RAG中的智能存储解决方案】
再见孙悟空_
AI进阶之旅》数据库RAGRAG智能存储方案RAG存储解决方案RAG技术RAG应用RAG智能存储
想象一下这样的场景:你走进一个存放着1亿本未分类书籍的巨型仓库,要在5秒内找到和"量子计算机如何实现能量回收"相关的所有资料。传统数据库就像拿着书名的目录管理员,而向量数据库则是个能闻着知识气味找书的猎犬——这就是RAG技术革命的内核。一、RAG技术为何需要新基建?1.1传统数据库的"肌无力症"关系型数据库在结构化数据领域称霸了40年,但在处理"小明昨天在星巴克用苹果手机拍了张晚霞照片"这种非结构
- Helix 是开源的私有 GenAI 堆栈,用于构建具有声明性管道、知识 (RAG)、API 绑定和一流测试的 AI 应用程序。
2301_78755287
人工智能
一、软件介绍文末提供程序包和源码下载私有GenAI堆栈。在您自己的数据中心或VPC中部署开放AI的最佳功能,并保持完整的数据安全性和控制。包括对RAG、API调用和微调模型的支持,就像拖放一样简单。通过编写helix.yaml来构建和部署LLM应用程序。正在寻找私人GenAI平台?从语言模型到图像模型等,Helix以符合人体工程学、可扩展的方式为您的业务带来最好的开源AI,同时优化GPU内存和延迟
- 写百万长文的AI助手
cainiaojunshi
人工智能
现在AI跑生成大纲,没问题。AI生成设定,包括人物,势力等,也没问题,可以直接拿最火的基本小说参考。真正的难点,AI没有长文记忆,最多16000字,像个聪明的老年痴呆。方案思路:每次给AI的指令,用程序固定输出:系统提示词+rag知识库+用户提示词系统提示词:固定不变的东西,如写作风格(实现方法:固定变量)rag知识库:相关人物的历史经历,人物信息,场景信息。(作用:限制AI自由放飞乱写。实现方法
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S