- RabbitMQ 与 Kafka:消息中间件的终极对比与选型指南
海上彼尚
node.jsrabbitmqkafka分布式node.js
引言在分布式系统架构中,消息中间件是异步通信的核心组件。RabbitMQ和Kafka作为两大主流技术,常被开发者拿来比较。本文深入解析两者的设计哲学、性能差异和典型场景,助你做出精准技术选型。目录引言一、核心设计差异1.定位与数据模型二、性能与架构对比1.吞吐量与延迟2.集群与扩展三、功能特性对决1.消息可靠性2.消息路由四、典型场景与选型决策1.优先选择Kafka的场景2.优先选择RabbitM
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- 没有好的学历,Java开发未来的路应该怎么走?
全干程序员demo
技术热文java开发语言
没有好的学历,Java开发未来的路应该怎么走?在当今数字化时代,技术发展日新月异,大模型应用、鸿蒙系统等新兴技术领域正在蓬勃发展,为Java开发者带来了新的机遇和挑战。即使没有高学历,Java开发者依然可以通过以下路径在这些新兴领域找到自己的发展方向,实现职业突破。一、拥抱新兴技术,拓宽技术边界(一)大模型应用:从开发到优化大模型技术正在重塑软件开发的各个环节。对于Java开发者来说,可以从以下几
- DeepSeek带来服务器与显卡需求激增的核心逻辑
DeepSeek+NAS
人工智能服务器运维网络安全计算机网络
随着DeepSeek等开源AI模型的普及,个人开发者和小型企业正加速构建私有化AI服务器,以处理敏感数据和定制化任务。这种趋势不仅重构了算力需求的结构,更推动服务器和显卡市场进入新一轮增长周期。以下从技术迭代、行业需求、市场格局三个维度展开论述。一、私有化部署:从数据安全到算力自主的核心驱动力数据隐私与合规性需求公共AI平台的数据泄露风险促使企业选择本地化部署。例如,医疗机构的患者数据、金融企业的
- Hugging Face预训练GPT微调ChatGPT(微调入门!新手友好!)
y江江江江
机器学习大模型gptchatgpt
HuggingFace预训练GPT微调ChatGPT(微调入门!新手友好!)在实战中,⼤多数情况下都不需要从0开始训练模型,⽽是使⽤“⼤⼚”或者其他研究者开源的已经训练好的⼤模型。在各种⼤模型开源库中,最具代表性的就是HuggingFace。HuggingFace是⼀家专注于NLP领域的AI公司,开发了⼀个名为Transformers的开源库,该开源库拥有许多预训练后的深度学习模型,如BERT、G
- cherry-studio - 多模型支持的跨平台 AI 桌面助手
小众AI
AI开源人工智能AI编程
GitHub:https://github.com/CherryHQ/cherry-studio更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI一款支持多种大语言模型服务的跨平台桌面客户端,兼容Windows、Linux和macOS系统。它支持主流云端模型(如OpenAI、Anthropic等)以及本地模型(如Ollama、LMStudio),能够满足文本生成、
- Open-Sora - 为所有人实现高效的视频制作大众化
小众AI
AI开源音视频人工智能AI编程
GitHub:https://github.com/hpcaitech/Open-Sora更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI这是一款开源的SOTA(State-of-the-Art)视频生成模型,仅用20万美元(224张GPU)就能训练出商业级11B参数的视频生成大模型。它采用Python语言和PyTorch深度学习框架开发,具有生成速度快、资源消
- OWL - 优化劳动力学习的通用智能体
小众AI
AI开源学习人工智能AI编程
GitHub:https://github.com/camel-ai/owl更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AIOWL是一个前沿的多智能体协作框架,推动任务自动化的边界,构建在CAMEL-AIFramework。愿景是彻底变革AI智能体协作解决现实任务的方式。通过利用动态智能体交互,OWL实现了跨多领域更自然、高效且稳健的任务自动化。OWL在GAIA
- 什么是MCP?看不懂你打我
X.Cristiano
深度学习MCP
什么是MCP?MCP是一种协议,它实现了大模型资源调用的标准化。千百年来,随着人类社会的发展,标准化的进程不断推进。大模型与外部资源的对接同样需要标准化,MCP正是为此而生!接下来的文字,或许,将帮助你奶奶明白MCP对于她意味着什么。2011年,微信发布。想象一下,你奶奶刚开始用微信。那时,还没有小程序。她的体验或许是这样的:第一个月,她惊喜地发现微信能订电影票了!再过一个月,她发现微信又能约出租
- 【AI大模型应用开发】RAG-Fusion框架:忘掉 RAG,未来是 RAG-Fusion
同学小张
大模型人工智能笔记chatgptagiembeddingRAGprompt
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习C++进阶、OpenGL、WebGL知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。RAG目前很火,但是也有一些不足的地方。有不足就有改进方法。本文我们来看一个方法:RAG-Fusion,理解其原理,并看一下其实现源码。文章目录0.RAG的不足1.RAG-Fusion原理概述2.步骤拆解与代码示例2.1
- 网络编程--服务器双客户端聊天
疾跑哥布林升级版
java算法开发语言
写一个服务器和客户端运行服务器和2个客户端,实现聊天功能客户端1和客户端2进行聊天,客户端1将聊天数据发送给服务器,服务器将聊天数据转发给客户端2要求:服务器使用select模型实现,客户端1使用poll模型实现,客户端2使用多线程实现服务器:#include//将client存入数组arr中的最后一个位置上,存完之后,arr数组的长度记得自增voidinsert_client(intarr[],
- rag-给一篇几百页的pdf,如何从中找到关键信息并汇总出关系图
蒸土豆的技术细节
人工智能
小思考对pdf肯定要做模糊chunk,能用模型切分就用模型切分,不能用模型就用规则,规则要尽可能保存连续文本,特殊数据格式(图、表格)必须完整保存,必须能被捕捉到。这些独立的表格or图数据,也要单独做embedding,以其中的title和行列title信息作embedding材料。也不能忘了传统搜索方法,基于搜索的、基于传统词频的、基于关键字的。。。假设已经找到了信息所在的目标,如果它是个表格,
- AI赋能视频创作:蓝耘MaaS与海螺AI技术的深度融合
云边有个稻草人
热门文章人工智能音视频图片生成视频蓝耘智算蓝耘MaaS平台体验海螺AI高效视频渲染和优化
云边有个稻草人-CSDN博客目录一、蓝耘MaaS平台概述(1)平台的模块化设计(2)蓝耘MaaS的灵活性与扩展性(3)蓝耘MaaS的安全性与隐私保护二、海螺AI视频模型简介(1)海螺AI的核心技术(2)海螺AI的视频生成流程(3)海螺AI的应用场景三、在蓝耘Maas平台如何使用海螺AI生成视频(1)注册蓝耘平台账号(2)点击MaaS平台(3)点击视觉模型并选择l2V-01视频模型(4)体验图片生成
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 风控算法(一)——数据测试
月亮月亮要去太阳
机器学习人工智能
下面的内容都是针对数据源测试的一些可能得问题:1、请描述你在开发和执行数据测试流程时的具体步骤。确定样本(对齐样本与时间,去除假样本)——确定特征(确认目前特征)——数据信息(返回的数据字典、收费方式、底层数据:特征、分数)——数据清洗(缺失值替换)——数据训练形成报告。2、如何确定数据产品在风险模型中的潜在价值和适用性的?AUC、IV、相关性、性价比、数据产品背景和领域3、请详细描述你负责的10
- 智见未来:多大模型协同的数据分析新范式
一ge科研小菜菜
人工智能大数据人工智能大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着大语言模型(LLM)的快速发展,ChatGPT、DeepSeek、Grok等AI模型在数据分析和洞察生成方面展现出巨大潜力。利用多个LLM的协同能力,可以增强数据分析的多角度解读、减少单一模型的偏差,并优化洞察生成的深度和精准度。本文探讨如何结合多个LLM,在数据分析领域实现更可靠的洞察生成,并提供具体的策略、方法和应用场景。2.主要
- 如何评估大语言模型生成文本的质量?
gs80140
AI语言模型人工智能自然语言处理
目录如何评估大语言模型生成文本的质量?1.评估指标概览自动评估指标(AutomaticMetrics)人工评估方法(HumanEvaluation)2.自动评估方法示例(1)计算BLEU分数(2)计算ROUGE分数(3)计算BERTScore(4)使用GPT-4进行评分3.人工评估方法(1)流畅性(Fluency)检查(2)连贯性(Coherence)检查(3)事实准确性(FactualAccur
- 无矩阵乘法LLM:效率与性能双突破
XianxinMao
人工智能矩阵人工智能线性代数
标题:无矩阵乘法LLM:效率与性能双突破文章信息摘要:无矩阵乘法的LLMs通过创新技术替代传统矩阵乘法操作,显著降低了计算成本,减少了对GPU的依赖。这种模型在内存使用和延迟方面表现优异,尤其在大规模模型上效率显著提升。例如,13B参数的模型仅需4.19GBGPU内存,延迟低至695.48ms,远优于传统模型。此外,基于FPGA的硬件优化进一步提升了性能,1.3B参数模型功耗仅为13W,达到人类阅
- Adam-mini:深度学习内存效率新突破
XianxinMao
人工智能深度学习人工智能
标题:Adam-mini:深度学习内存效率新突破文章信息摘要:Adam-mini优化器在深度学习领域展现出突破性潜力,尤其在内存效率和计算性能上表现卓越。相比AdamW,Adam-mini将内存效率提升了一倍,并通过减少学习率数量显著降低了内存消耗,同时保持了与AdamW相当甚至更好的性能。在训练十亿参数级别的大语言模型(LLM)时,Adam-mini实现了49.6%的吞吐量提升,并减少了33%的
- 【机器学习】模型拟合
CH3_CH2_CHO
什么?!是机器学习!!机器学习人工智能欠拟合过拟合
1、欠拟合1.1现象欠拟合是机器学习和统计建模中的一种常见问题,表现为模型无法充分捕捉数据中的潜在规律和模式。无论是训练数据还是测试数据,模型的预测误差都居高不下。在实际应用中,欠拟合的模型往往显得过于简单和粗糙,无法对数据进行有效的拟合和描述。1.2原因模型过于简单是导致欠拟合的主要原因:例如,使用直线去拟合具有明显曲线趋势的数据,或者使用低阶多项式去拟合高阶的复杂函数关系。这种情况下,模型的表
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- 使用提示词进行信息抽取的实用方法
scaFHIO
windowspython
在大规模语言模型(LLM)中进行信息抽取时,我们不一定需要工具调用功能。通过精心设计的提示词(prompt)可以指导模型输出特定格式的信息,然后对其进行解析以生成结构化数据。这种方法依赖于创建良好的提示词,并将LLM的输出解析为所需的Python对象。技术背景介绍大规模语言模型可以根据提示词生成特定格式的文本。例如,我们可以要求模型以JSON格式输出所需的信息。在信息抽取的场景中,设计良好的提示词
- 服务器相关的硬件知识
猿小喵
运维服务器数据库
网卡:网卡是计算机网络中用于实现计算机之间通信的硬件设备。它工作在OSI模型的第二层(链路层),通过电缆或无线信号与网络设备(如交换机、路由器)连接,带有芯片,可插拔。网卡的接口分为电口(如RJ45接口,用于连接网线)和光口(用于连接光模块和光纤)。根据传输协议,网卡可分为以太网卡、FC(FibreChannel)网卡和iSCSI网卡。以太网卡是最常见的类型,用于普通网络通信;FC网卡主要用于存储
- 笔记:代码随想录算法训练营day57:99.岛屿数量 深搜、岛屿数量 广搜、100.岛屿的最大面积
jingjingjing1111
深度优先算法笔记
学习资料:代码随想录注:文中含大模型生成内容99.岛屿数量卡码网题目链接(ACM模式)先看深搜方法:找到未标标记过的说明找到一片陆地的或者一片陆地的一个角落,dfs搜索是寻找相连接的陆地其余部分并做好标记#include#includeusingnamespacestd;intdirection[4][2]={0,1,-1,0,0,-1,1,0};voiddfs(constvector>&B612
- 正则表达式:编程中的瑞士军刀,如何借助智能工具实现高效开发
inscode_039
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE正则表达式:编程中的瑞士军刀,如何借助智能工具实现高效开发正则表达式(RegularExpression,简称regex或regexp)是一种用于匹配字符串的模式描述语言。它广泛应用于文本处理、数据验证、搜索和替换等场景中。然而,正则表达式的复杂性和晦涩性常常让编程初学者望而却步。幸运的是,随着AI技术的进步,像InsCo
- 浏览器 DOM 深度解析:从节点类型到遍历操作的全攻略
码农的时光故事
javascript开发语言ecmascript
一、DOM核心概念与节点类型DOM(文档对象模型)是浏览器提供的核心API之一,用于将HTML文档转换为可操作的对象树结构。其核心设计遵循树形结构,每个节点都继承自Node接口,主要分为以下类型:1.基础节点类型Element:对应HTML标签,包含属性和子节点()Text:文本内容节点Comment:注释节点Document:文档根节点,通过document全局对象访问()2.特殊节点类型Doc
- 浏览器工作原理深度解析(阶段一):从 URL 到页面渲染的完整流程
码农的时光故事
javascript前端
一、浏览器工作流程概述作为前端开发者,我们每天都在与浏览器打交道,但多数人对其内部工作机制却知之甚少。实际上,浏览器的核心功能就是将用户输入的URL转换为可视化的网页。这一过程大致分为六个关键步骤:网络请求:通过HTTP/HTTPS协议获取页面资源构建DOM树:解析HTML代码生成文档对象模型样式计算:解析CSS规则并应用到对应元素布局渲染:计算元素位置和尺寸生成渲染树合成优化:将渲染层合并为位图
- Mac上传本地项目文件夹到远程Github个人仓库的方法及常见报错处理
Uzw
GitMacgitgithubmac
最近写NER模型的同时学习参悟了一个开源的项目,做了一些Comments改了点分词规则,打算上传到个人Github仓库,上一次本地上传还是用Windows系统,换了Mac发现有一些规则不能用了,好久不用Git都忘光了…上传过程中报错无数,在此一并总结啦!文章目录Prerequisite上传本地文件夹到Github步骤报错问题描述及解决方法1.You‘veaddedanothergitreposit
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- matlab中s-function模块局部变量的应用
0如约而至0
matlab
最近在项目中,涉及到了matlab中s-function函数的应用。需要在输出信号上加一个受地面站控制的3211激励信号。实现的过程中,遇到了s-function函数内部局部变量每次进入都会初始化置0的问题,网上查阅资料并结合模型实例,最后通过isempty函数来实现。具体的matlab实现代码如下://functiony=fcn(act_sign,act)persistentt2ifisempt
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S