机器人中的数值优化进阶|【二】三次样条曲线推导(中)

机器人中的数值优化|【自用二】三次样条曲线推导

接之前,由于
c i = 3 ( η i + 1 − η i ) − 2 D i − D i + 1 c_i = 3(\eta_{i+1} - \eta_i) - 2D_i - D_{i+1} ci=3(ηi+1ηi)2DiDi+1
因此有
c = 3 [ − 1 1 0 0 . . . 0 0 − 1 1 0 . . . 0 0 0 − 1 1 . . . 0 . . . . . . 0 0 0 . . . − 1 1 ] n × ( n + 1 ) η − [ 2 1 0 0 . . . 0 0 2 1 0 . . . 0 0 0 1 1 . . . 0 . . . . . . 0 0 0 . . . 2 1 ] n × ( n + 1 ) D c = 3\begin{bmatrix} -1 & 1 & 0 & 0 & ... & 0 \\ 0 & -1 & 1 & 0 & ... & 0 \\ 0 & 0 & -1 & 1 & ... & 0 \\ ... & ... \\ 0 & 0 & 0 & ... & -1 & 1 \end{bmatrix}_{n\times(n+1)} \eta - \begin{bmatrix} 2 & 1 & 0 & 0 & ... & 0 \\ 0 & 2 & 1& 0 & ... & 0 \\ 0 & 0 & 1 & 1 & ... & 0 \\ ... & ... \\ 0 & 0 & 0 & ... & 2 & 1 \end{bmatrix}_{n\times(n+1)} D c=3 100...0110...00110001............10001 n×(n+1)η 200...0120...00110001............20001 n×(n+1)D
c ∈ R ( n × 2 ) c \in \mathbb{R}^{(n\times 2)} cR(n×2)

[ − 1 1 0 0 . . . 0 0 − 1 1 0 . . . 0 0 0 − 1 1 . . . 0 . . . . . . 0 0 0 . . . − 1 1 ] n × ( n + 1 ) = P \begin{bmatrix} -1 & 1 & 0 & 0 & ... & 0 \\ 0 & -1 & 1 & 0 & ... & 0 \\ 0 & 0 & -1 & 1 & ... & 0 \\ ... & ... \\ 0 & 0 & 0 & ... & -1 & 1 \end{bmatrix}_{n\times(n+1)} = P 100...0110...00110001...

你可能感兴趣的:(algorithm,机器人,线性代数,矩阵)