[1]
Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery[J]. Pharmacol Rev, 2013, 66(1):334-395.
Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery[J]. Pharmacol Rev, 2013, 66(1):334-395.
[2]
高丽, 刘艾林, 杜冠华. 计算机辅助药物设计在新药研发中的应用进展[J]. 中国药学杂志, 2011, 46(9):641-645.
[3]
Singh G, Arora A, Singh A, et al. Molecular design, synthesis, computational screening, antimicrobial evaluation and molecular docking study of acetylinic isatin hybrids[J]. ChemistrySelect, 2018, 3(6):1942-1952.
Singh G, Arora A, Singh A, et al. Molecular design, synthesis, computational screening, antimicrobial evaluation and molecular docking study of acetylinic isatin hybrids[J]. ChemistrySelect, 2018, 3(6):1942-1952.
[4]
Karthick V, Nagasundaram N, Doss C G, et al. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus[J]. Infec Dis Povert, 2016, 5:12. Doi:10.1186/s40249-016-0105-1.
Karthick V, Nagasundaram N, Doss C G, et al. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus[J]. Infec Dis Povert, 2016, 5:12. Doi:10.1186/s40249-016-0105-1.
[5]
Yu W, Mackerell A D, Jr. Computer-aided drug design methods[J]. Methods Mol Biol, 2017, 1520:85-106.
Yu W, Mackerell A D, Jr. Computer-aided drug design methods[J]. Methods Mol Biol, 2017, 1520:85-106.
[6]
Evanthia L, George S, Demetrios K V, et al. Structure-based virtual screening for drug discovery:principles, applications and recent advances[J]. Curr Top Med Chem, 2014, 14(16):1923-1938.
Evanthia L, George S, Demetrios K V, et al. Structure-based virtual screening for drug discovery:principles, applications and recent advances[J]. Curr Top Med Chem, 2014, 14(16):1923-1938.
[7]
Boibessot T, Zschiedrich C P, Lebeau A, et al. The rational design, synthesis, and antimicrobial properties of thiophene derivatives that inhibit bacterial histidine kinases[J]. J Med Chem, 2016, 59(19):8830-8847.
Boibessot T, Zschiedrich C P, Lebeau A, et al. The rational design, synthesis, and antimicrobial properties of thiophene derivatives that inhibit bacterial histidine kinases[J]. J Med Chem, 2016, 59(19):8830-8847.
[8]
Jakopin Z, Ilas J, Barancokova M, et al. Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors[J]. Eur J Med Chem, 2017, 130:171-184.
Jakopin Z, Ilas J, Barancokova M, et al. Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors[J]. Eur J Med Chem, 2017, 130:171-184.
[9]
Nandi S. Recent advances in ligand and structure based screening of potent quorum sensing inhibitors against antibiotic resistance induced bacterial virulence[J]. Recent Patents Biotech, 2016, 10(2):195-216.
Nandi S. Recent advances in ligand and structure based screening of potent quorum sensing inhibitors against antibiotic resistance induced bacterial virulence[J]. Recent Patents Biotech, 2016, 10(2):195-216.
[10]
Sledz P, Caflisch A. Protein structure-based drug design:from docking to molecular dynamics[J]. Curr Opin Struct Biol, 2017, 48:93-102.
Sledz P, Caflisch A. Protein structure-based drug design:from docking to molecular dynamics[J]. Curr Opin Struct Biol, 2017, 48:93-102.
[11]
Zhou Z T, Ma S T. Recent advances in the discovery of PqsD inhibitors as antimicrobial agents[J]. ChemMedChem, 2017, 12(6):420-425.
Zhou Z T, Ma S T. Recent advances in the discovery of PqsD inhibitors as antimicrobial agents[J]. ChemMedChem, 2017, 12(6):420-425.
[12]
Li X L, Cai Y, Yang F, et al. Synthesis and molecular docking studies of chrysin derivatives as antibacterial agents[J]. Med Chem Res, 2017, 26(10):2225-2234.
Li X L, Cai Y, Yang F, et al. Synthesis and molecular docking studies of chrysin derivatives as antibacterial agents[J]. Med Chem Res, 2017, 26(10):2225-2234.
[13]
Wang T, Wu M B, Zhang R H, et al. Advances in computational structure-based drug design and application in drug discovery[J]. Curr Top Med Chem, 2016, 16(9):901-916.
Wang T, Wu M B, Zhang R H, et al. Advances in computational structure-based drug design and application in drug discovery[J]. Curr Top Med Chem, 2016, 16(9):901-916.
[14]
Fitzpatrick L R, Deml L, Hofmann C, et al. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2010, 16(10):1763-1777.
Fitzpatrick L R, Deml L, Hofmann C, et al. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2010, 16(10):1763-1777.
[15]
Coumar M S, Leou J S, Shukla P, et al. Structure-based drug design of novel aurora kinase A inhibitors:structural basis for potency and specificity[J]. J Med Chem, 2009, 52(4):1050-1062.
Coumar M S, Leou J S, Shukla P, et al. Structure-based drug design of novel aurora kinase A inhibitors:structural basis for potency and specificity[J]. J Med Chem, 2009, 52(4):1050-1062.
[16]
Ballester P J, Mangold M, Howard N I, et al. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification[J]. J R Soc Interface, 2012, 9(77):3196-3207.
Ballester P J, Mangold M, Howard N I, et al. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification[J]. J R Soc Interface, 2012, 9(77):3196-3207.
[17]
Distinto S, Esposito F, Kirchmair J, et al. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint-and pharmacophore-based virtual screening approach[J]. Eur J Med Chem, 2012, 50:216-229.
Distinto S, Esposito F, Kirchmair J, et al. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint-and pharmacophore-based virtual screening approach[J]. Eur J Med Chem, 2012, 50:216-229.
[18]
Gudzera O I, Golub A G, Bdzhola V G, et al. Discovery of potent antituberculosis agents targeting leucyl-tRNA synthetase[J]. Bioorg Med Chem, 2016, 24(5):1023-1031.
Gudzera O I, Golub A G, Bdzhola V G, et al. Discovery of potent antituberculosis agents targeting leucyl-tRNA synthetase[J]. Bioorg Med Chem, 2016, 24(5):1023-1031.
[19]
Zhang F, Du J, Wang Q, et al. Discovery of N-(4-sulfamoylphenyl) thioureas as trypanosoma brucei leucyl-tRNA synthetase inhibitors[J]. Org Biomol Chem, 2013, 11(32):5310-5324.
Zhang F, Du J, Wang Q, et al. Discovery of N-(4-sulfamoylphenyl) thioureas as trypanosoma brucei leucyl-tRNA synthetase inhibitors[J]. Org Biomol Chem, 2013, 11(32):5310-5324.
[20]
Li G B, Abboud M I, Brem J, et al. NMR-filtered virtual screening leads to non-metal chelating metallo-beta-lactamase inhibitors[J]. Chem Sci, 2017, 8(2):928-937.
Li G B, Abboud M I, Brem J, et al. NMR-filtered virtual screening leads to non-metal chelating metallo-beta-lactamase inhibitors[J]. Chem Sci, 2017, 8(2):928-937.
[21]
Macalino S J Y, Gosu V, Hong S, et al. Role of computer-aided drug design in modern drug discovery[J]. Arch Pharm Res, 2015, 38(9):1686-1701.
Macalino S J Y, Gosu V, Hong S, et al. Role of computer-aided drug design in modern drug discovery[J]. Arch Pharm Res, 2015, 38(9):1686-1701.
[22]
Melo-Filho C C, Braga R C, Andrade C H. 3D-QSAR approaches in drug design:perspectives to generate reliable CoMFA models[J]. Curr Comput Aided Drug Des, 2014, 10(2):148-159.
Melo-Filho C C, Braga R C, Andrade C H. 3D-QSAR approaches in drug design:perspectives to generate reliable CoMFA models[J]. Curr Comput Aided Drug Des, 2014, 10(2):148-159.
[23]
Shi J C, Zhao D, Luo M, et al. A mechanism-based 3D-QSAR and DFT approach for the prediction of H5N1 entry inhibitory potency of 3-O-beta-chacotriosyl ursolic acid derivatives[J]. Chin J Struct Chem, 2017, 36(12):1987-1999.
Shi J C, Zhao D, Luo M, et al. A mechanism-based 3D-QSAR and DFT approach for the prediction of H5N1 entry inhibitory potency of 3-O-beta-chacotriosyl ursolic acid derivatives[J]. Chin J Struct Chem, 2017, 36(12):1987-1999.
[24]
Lee J Y, Jeong M C, Jeon D, et al. Structure-activity relationshipbased screening of antibiotics against Gram-negative Acinetobacter baumannii[J]. Bioorg Med Chem, 2017, 25(1):372-380.
Lee J Y, Jeong M C, Jeon D, et al. Structure-activity relationshipbased screening of antibiotics against Gram-negative Acinetobacter baumannii[J]. Bioorg Med Chem, 2017, 25(1):372-380.
[25]
Ciura K, Nowakowska J, Rudnicka-Litka K, et al. The study of salting-out thin-layer chromatography and their application on QSRR/QSAR of some macrolide antibiotics[J]. Monatshefte Fur Chemie, 2016, 147(2):301-310.
Ciura K, Nowakowska J, Rudnicka-Litka K, et al. The study of salting-out thin-layer chromatography and their application on QSRR/QSAR of some macrolide antibiotics[J]. Monatshefte Fur Chemie, 2016, 147(2):301-310.
[26]
Vuorinen A, Schuster D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling[J]. Methods, 2015, 71:113-134.
Vuorinen A, Schuster D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling[J]. Methods, 2015, 71:113-134.
[27]
Eissa S I, Farrag A M, Shawer T Z, et al. Design, synthesis, 3D pharmacophore, QSAR, and docking studies of some new (6-methoxy-2-naphthyl) propanamide derivatives with expected anti-bacterial activity as FABI inhibitor[J]. Med Chem Res, 2017, 26(10):2375-2398.
Eissa S I, Farrag A M, Shawer T Z, et al. Design, synthesis, 3D pharmacophore, QSAR, and docking studies of some new (6-methoxy-2-naphthyl) propanamide derivatives with expected anti-bacterial activity as FABI inhibitor[J]. Med Chem Res, 2017, 26(10):2375-2398.
[28]
Koseki Y, Kanetaka H, Tsunosaki J, et al. Tetrahydro-2-furanyl-2,4(1H,3H)-pyrimidinedione derivatives as novel antibacterial compounds against Mycobacterium[J]. Int J Mycobacte, 2017, 6(1):61-69.
Koseki Y, Kanetaka H, Tsunosaki J, et al. Tetrahydro-2-furanyl-2,4(1H,3H)-pyrimidinedione derivatives as novel antibacterial compounds against Mycobacterium[J]. Int J Mycobacte, 2017, 6(1):61-69.
[29]
Huang S Y, Li M, Wang J, et al. HybridDock:a hybrid protein-ligand docking protocol integrating protein-and ligand-based approaches[J]. Chem Inform Mod, 2016, 56(6):1078-1087.
Huang S Y, Li M, Wang J, et al. HybridDock:a hybrid protein-ligand docking protocol integrating protein-and ligand-based approaches[J]. Chem Inform Mod, 2016, 56(6):1078-1087.
[30]
Frey K M, Lombardo M N, Wright D L, et al. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase[J]. J Struct Biol, 2010, 170(1):93-97.
Frey K M, Lombardo M N, Wright D L, et al. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase[J]. J Struct Biol, 2010, 170(1):93-97.
[31]
Drawz S M, Bonomo R A. Three decades of beta-lactamase inhibitors[J]. Clin Microbiol Rev, 2010, 23(1):160-170.
Drawz S M, Bonomo R A. Three decades of beta-lactamase inhibitors[J]. Clin Microbiol Rev, 2010, 23(1):160-170.
[32]
Ferreira R S, Andricopulo A D. Structure-based drug design to overcome drug resistance:challenges and opportunities[J]. Curr Pharm Des, 2014, 20(5):687-693.
Ferreira R S, Andricopulo A D. Structure-based drug design to overcome drug resistance:challenges and opportunities[J]. Curr Pharm Des, 2014, 20(5):687-693.
[33]
Ahamad S, Rahman S, Khan F I, et al. QSAR based therapeutic management of M-tuberculosis[J]. Arch Pharm Res, 2017, 40(6):676-694.
Ahamad S, Rahman S, Khan F I, et al. QSAR based therapeutic management of M-tuberculosis[J]. Arch Pharm Res, 2017, 40(6):676-694.