计算机辅助药物设计在新药研发中的应用,计算机辅助药物设计在抗耐药菌药物研发中的应用进展...

[1]

Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery[J]. Pharmacol Rev, 2013, 66(1):334-395.

Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery[J]. Pharmacol Rev, 2013, 66(1):334-395.

[2]

高丽, 刘艾林, 杜冠华. 计算机辅助药物设计在新药研发中的应用进展[J]. 中国药学杂志, 2011, 46(9):641-645.

[3]

Singh G, Arora A, Singh A, et al. Molecular design, synthesis, computational screening, antimicrobial evaluation and molecular docking study of acetylinic isatin hybrids[J]. ChemistrySelect, 2018, 3(6):1942-1952.

Singh G, Arora A, Singh A, et al. Molecular design, synthesis, computational screening, antimicrobial evaluation and molecular docking study of acetylinic isatin hybrids[J]. ChemistrySelect, 2018, 3(6):1942-1952.

[4]

Karthick V, Nagasundaram N, Doss C G, et al. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus[J]. Infec Dis Povert, 2016, 5:12. Doi:10.1186/s40249-016-0105-1.

Karthick V, Nagasundaram N, Doss C G, et al. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus[J]. Infec Dis Povert, 2016, 5:12. Doi:10.1186/s40249-016-0105-1.

[5]

Yu W, Mackerell A D, Jr. Computer-aided drug design methods[J]. Methods Mol Biol, 2017, 1520:85-106.

Yu W, Mackerell A D, Jr. Computer-aided drug design methods[J]. Methods Mol Biol, 2017, 1520:85-106.

[6]

Evanthia L, George S, Demetrios K V, et al. Structure-based virtual screening for drug discovery:principles, applications and recent advances[J]. Curr Top Med Chem, 2014, 14(16):1923-1938.

Evanthia L, George S, Demetrios K V, et al. Structure-based virtual screening for drug discovery:principles, applications and recent advances[J]. Curr Top Med Chem, 2014, 14(16):1923-1938.

[7]

Boibessot T, Zschiedrich C P, Lebeau A, et al. The rational design, synthesis, and antimicrobial properties of thiophene derivatives that inhibit bacterial histidine kinases[J]. J Med Chem, 2016, 59(19):8830-8847.

Boibessot T, Zschiedrich C P, Lebeau A, et al. The rational design, synthesis, and antimicrobial properties of thiophene derivatives that inhibit bacterial histidine kinases[J]. J Med Chem, 2016, 59(19):8830-8847.

[8]

Jakopin Z, Ilas J, Barancokova M, et al. Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors[J]. Eur J Med Chem, 2017, 130:171-184.

Jakopin Z, Ilas J, Barancokova M, et al. Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors[J]. Eur J Med Chem, 2017, 130:171-184.

[9]

Nandi S. Recent advances in ligand and structure based screening of potent quorum sensing inhibitors against antibiotic resistance induced bacterial virulence[J]. Recent Patents Biotech, 2016, 10(2):195-216.

Nandi S. Recent advances in ligand and structure based screening of potent quorum sensing inhibitors against antibiotic resistance induced bacterial virulence[J]. Recent Patents Biotech, 2016, 10(2):195-216.

[10]

Sledz P, Caflisch A. Protein structure-based drug design:from docking to molecular dynamics[J]. Curr Opin Struct Biol, 2017, 48:93-102.

Sledz P, Caflisch A. Protein structure-based drug design:from docking to molecular dynamics[J]. Curr Opin Struct Biol, 2017, 48:93-102.

[11]

Zhou Z T, Ma S T. Recent advances in the discovery of PqsD inhibitors as antimicrobial agents[J]. ChemMedChem, 2017, 12(6):420-425.

Zhou Z T, Ma S T. Recent advances in the discovery of PqsD inhibitors as antimicrobial agents[J]. ChemMedChem, 2017, 12(6):420-425.

[12]

Li X L, Cai Y, Yang F, et al. Synthesis and molecular docking studies of chrysin derivatives as antibacterial agents[J]. Med Chem Res, 2017, 26(10):2225-2234.

Li X L, Cai Y, Yang F, et al. Synthesis and molecular docking studies of chrysin derivatives as antibacterial agents[J]. Med Chem Res, 2017, 26(10):2225-2234.

[13]

Wang T, Wu M B, Zhang R H, et al. Advances in computational structure-based drug design and application in drug discovery[J]. Curr Top Med Chem, 2016, 16(9):901-916.

Wang T, Wu M B, Zhang R H, et al. Advances in computational structure-based drug design and application in drug discovery[J]. Curr Top Med Chem, 2016, 16(9):901-916.

[14]

Fitzpatrick L R, Deml L, Hofmann C, et al. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2010, 16(10):1763-1777.

Fitzpatrick L R, Deml L, Hofmann C, et al. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2010, 16(10):1763-1777.

[15]

Coumar M S, Leou J S, Shukla P, et al. Structure-based drug design of novel aurora kinase A inhibitors:structural basis for potency and specificity[J]. J Med Chem, 2009, 52(4):1050-1062.

Coumar M S, Leou J S, Shukla P, et al. Structure-based drug design of novel aurora kinase A inhibitors:structural basis for potency and specificity[J]. J Med Chem, 2009, 52(4):1050-1062.

[16]

Ballester P J, Mangold M, Howard N I, et al. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification[J]. J R Soc Interface, 2012, 9(77):3196-3207.

Ballester P J, Mangold M, Howard N I, et al. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification[J]. J R Soc Interface, 2012, 9(77):3196-3207.

[17]

Distinto S, Esposito F, Kirchmair J, et al. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint-and pharmacophore-based virtual screening approach[J]. Eur J Med Chem, 2012, 50:216-229.

Distinto S, Esposito F, Kirchmair J, et al. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint-and pharmacophore-based virtual screening approach[J]. Eur J Med Chem, 2012, 50:216-229.

[18]

Gudzera O I, Golub A G, Bdzhola V G, et al. Discovery of potent antituberculosis agents targeting leucyl-tRNA synthetase[J]. Bioorg Med Chem, 2016, 24(5):1023-1031.

Gudzera O I, Golub A G, Bdzhola V G, et al. Discovery of potent antituberculosis agents targeting leucyl-tRNA synthetase[J]. Bioorg Med Chem, 2016, 24(5):1023-1031.

[19]

Zhang F, Du J, Wang Q, et al. Discovery of N-(4-sulfamoylphenyl) thioureas as trypanosoma brucei leucyl-tRNA synthetase inhibitors[J]. Org Biomol Chem, 2013, 11(32):5310-5324.

Zhang F, Du J, Wang Q, et al. Discovery of N-(4-sulfamoylphenyl) thioureas as trypanosoma brucei leucyl-tRNA synthetase inhibitors[J]. Org Biomol Chem, 2013, 11(32):5310-5324.

[20]

Li G B, Abboud M I, Brem J, et al. NMR-filtered virtual screening leads to non-metal chelating metallo-beta-lactamase inhibitors[J]. Chem Sci, 2017, 8(2):928-937.

Li G B, Abboud M I, Brem J, et al. NMR-filtered virtual screening leads to non-metal chelating metallo-beta-lactamase inhibitors[J]. Chem Sci, 2017, 8(2):928-937.

[21]

Macalino S J Y, Gosu V, Hong S, et al. Role of computer-aided drug design in modern drug discovery[J]. Arch Pharm Res, 2015, 38(9):1686-1701.

Macalino S J Y, Gosu V, Hong S, et al. Role of computer-aided drug design in modern drug discovery[J]. Arch Pharm Res, 2015, 38(9):1686-1701.

[22]

Melo-Filho C C, Braga R C, Andrade C H. 3D-QSAR approaches in drug design:perspectives to generate reliable CoMFA models[J]. Curr Comput Aided Drug Des, 2014, 10(2):148-159.

Melo-Filho C C, Braga R C, Andrade C H. 3D-QSAR approaches in drug design:perspectives to generate reliable CoMFA models[J]. Curr Comput Aided Drug Des, 2014, 10(2):148-159.

[23]

Shi J C, Zhao D, Luo M, et al. A mechanism-based 3D-QSAR and DFT approach for the prediction of H5N1 entry inhibitory potency of 3-O-beta-chacotriosyl ursolic acid derivatives[J]. Chin J Struct Chem, 2017, 36(12):1987-1999.

Shi J C, Zhao D, Luo M, et al. A mechanism-based 3D-QSAR and DFT approach for the prediction of H5N1 entry inhibitory potency of 3-O-beta-chacotriosyl ursolic acid derivatives[J]. Chin J Struct Chem, 2017, 36(12):1987-1999.

[24]

Lee J Y, Jeong M C, Jeon D, et al. Structure-activity relationshipbased screening of antibiotics against Gram-negative Acinetobacter baumannii[J]. Bioorg Med Chem, 2017, 25(1):372-380.

Lee J Y, Jeong M C, Jeon D, et al. Structure-activity relationshipbased screening of antibiotics against Gram-negative Acinetobacter baumannii[J]. Bioorg Med Chem, 2017, 25(1):372-380.

[25]

Ciura K, Nowakowska J, Rudnicka-Litka K, et al. The study of salting-out thin-layer chromatography and their application on QSRR/QSAR of some macrolide antibiotics[J]. Monatshefte Fur Chemie, 2016, 147(2):301-310.

Ciura K, Nowakowska J, Rudnicka-Litka K, et al. The study of salting-out thin-layer chromatography and their application on QSRR/QSAR of some macrolide antibiotics[J]. Monatshefte Fur Chemie, 2016, 147(2):301-310.

[26]

Vuorinen A, Schuster D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling[J]. Methods, 2015, 71:113-134.

Vuorinen A, Schuster D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling[J]. Methods, 2015, 71:113-134.

[27]

Eissa S I, Farrag A M, Shawer T Z, et al. Design, synthesis, 3D pharmacophore, QSAR, and docking studies of some new (6-methoxy-2-naphthyl) propanamide derivatives with expected anti-bacterial activity as FABI inhibitor[J]. Med Chem Res, 2017, 26(10):2375-2398.

Eissa S I, Farrag A M, Shawer T Z, et al. Design, synthesis, 3D pharmacophore, QSAR, and docking studies of some new (6-methoxy-2-naphthyl) propanamide derivatives with expected anti-bacterial activity as FABI inhibitor[J]. Med Chem Res, 2017, 26(10):2375-2398.

[28]

Koseki Y, Kanetaka H, Tsunosaki J, et al. Tetrahydro-2-furanyl-2,4(1H,3H)-pyrimidinedione derivatives as novel antibacterial compounds against Mycobacterium[J]. Int J Mycobacte, 2017, 6(1):61-69.

Koseki Y, Kanetaka H, Tsunosaki J, et al. Tetrahydro-2-furanyl-2,4(1H,3H)-pyrimidinedione derivatives as novel antibacterial compounds against Mycobacterium[J]. Int J Mycobacte, 2017, 6(1):61-69.

[29]

Huang S Y, Li M, Wang J, et al. HybridDock:a hybrid protein-ligand docking protocol integrating protein-and ligand-based approaches[J]. Chem Inform Mod, 2016, 56(6):1078-1087.

Huang S Y, Li M, Wang J, et al. HybridDock:a hybrid protein-ligand docking protocol integrating protein-and ligand-based approaches[J]. Chem Inform Mod, 2016, 56(6):1078-1087.

[30]

Frey K M, Lombardo M N, Wright D L, et al. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase[J]. J Struct Biol, 2010, 170(1):93-97.

Frey K M, Lombardo M N, Wright D L, et al. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase[J]. J Struct Biol, 2010, 170(1):93-97.

[31]

Drawz S M, Bonomo R A. Three decades of beta-lactamase inhibitors[J]. Clin Microbiol Rev, 2010, 23(1):160-170.

Drawz S M, Bonomo R A. Three decades of beta-lactamase inhibitors[J]. Clin Microbiol Rev, 2010, 23(1):160-170.

[32]

Ferreira R S, Andricopulo A D. Structure-based drug design to overcome drug resistance:challenges and opportunities[J]. Curr Pharm Des, 2014, 20(5):687-693.

Ferreira R S, Andricopulo A D. Structure-based drug design to overcome drug resistance:challenges and opportunities[J]. Curr Pharm Des, 2014, 20(5):687-693.

[33]

Ahamad S, Rahman S, Khan F I, et al. QSAR based therapeutic management of M-tuberculosis[J]. Arch Pharm Res, 2017, 40(6):676-694.

Ahamad S, Rahman S, Khan F I, et al. QSAR based therapeutic management of M-tuberculosis[J]. Arch Pharm Res, 2017, 40(6):676-694.

你可能感兴趣的:(计算机辅助药物设计在新药研发中的应用,计算机辅助药物设计在抗耐药菌药物研发中的应用进展...)