之前一直在做公司内网项目,对与加密基本没有考虑,最近看到加密的方法,在此做一个笔记,以便后面使用,
RSA加密算法简介
SA加密算法是一种非对称加密算法。在公开密钥加密和电子商业中RSA被广泛使用。对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法的话,那么用RSA加密的信息的可靠性就肯定会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA钥匙才可能被强力方式解破。到目前为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。
RSA加密的java实现
实现的思路,由RSA随机生成一对公钥和私钥,公钥方到客户端,私钥放到服务端,发送数据的时候由公钥对传输数据进行加密,然后发送给服务端,服务端用私钥才能对数据进行解密.下面是代码实现的例子
package com.yihur.demo
import org.apache.commons.codec.binary.Base64;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import java.nio.charset.StandardCharsets;
import java.security.*;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.HashMap;
import java.util.Map;
/**
* @author yihur
* @description RSA加密
* @date 2019/4/3
*/
public class MyRSAencryptionMethod {
private static Logger logger = LoggerFactory.getLogger(MyRSAencryptionMethod .class);
/**
* 用于封装随机产生的公钥与私钥
*
* @author yihur
* @date 2019/4/4
* @param
* @return
*/
private static Map keyMap = new HashMap<>();
/**
* 测试方法
*
* @param args
* @return void
*
*
* 前端用crypto-js进行加密,
* npm i jsencrypt,
* 然后页面头引入import JSEncrypt from 'jsencrypt';
* const encrypt = new JSEncrypt();
* encrypt.setPublicKey('你的公钥');
* password = encrypt.encrypt(‘你的密码’);// 加密后的字符串
* @author yihur
* @date 2019/4/4
*/
public static void main(String[] args) {
//生成公钥和私钥
genKeyPair();
//加密字符串
String message = "df723820";
System.out.println("随机生成的公钥为:" + keyMap.get(0));
System.out.println("随机生成的私钥为:" + keyMap.get(1));
String messageEn = encrypt(message, keyMap.get(0));
System.out.println("加密后的字符串为:" + messageEn);
String messageDe = decrypt(messageEn, keyMap.get(1));
System.out.println("还原后的字符串为:" + messageDe);
}
/**
* 随机生成密钥对
*
* @param
* @return void
* @author yihur
* @date 2019/4/4
*/
public static void genKeyPair() {
// KeyPairGenerator类用于生成公钥和私钥对,基于RSA算法生成对象
KeyPairGenerator keyPairGen = null;
try {
keyPairGen = KeyPairGenerator.getInstance("RSA");
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
logger.info(e.getMessage());
}
// 初始化密钥对生成器,密钥大小为96-1024位
assert keyPairGen != null;
keyPairGen.initialize(1024, new SecureRandom());
// 生成一个密钥对,保存在keyPair中
KeyPair keyPair = keyPairGen.generateKeyPair();
RSAPrivateKey privateKey = (RSAPrivateKey) keyPair.getPrivate(); // 得到私钥
RSAPublicKey publicKey = (RSAPublicKey) keyPair.getPublic(); // 得到公钥
String publicKeyString = new String(Base64.encodeBase64(publicKey.getEncoded()));
// 得到私钥字符串
String privateKeyString = new String(Base64.encodeBase64((privateKey.getEncoded())));
// 将公钥和私钥保存到Map
keyMap.put(0, publicKeyString); //0表示公钥
keyMap.put(1, privateKeyString); //1表示私钥
}
/**
* RSA公钥加密
*
* @param str 加密字符串
* @param publicKey 公钥
* @return 密文
*/
public static String encrypt(String str, String publicKey) {
//base64编码的公钥
byte[] decoded = Base64.decodeBase64(publicKey);
RSAPublicKey pubKey = null;
String outStr = null;
try {
pubKey = (RSAPublicKey) KeyFactory.getInstance("RSA").generatePublic(new X509EncodedKeySpec(decoded));
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.ENCRYPT_MODE, pubKey);
outStr = Base64.encodeBase64String(cipher.doFinal(str.getBytes(StandardCharsets.UTF_8)));
} catch (InvalidKeySpecException | BadPaddingException | IllegalBlockSizeException | InvalidKeyException | NoSuchPaddingException | NoSuchAlgorithmException e) {
e.printStackTrace();
logger.info(e.getMessage());
}
//RSA加密
return outStr;
}
/**
* RSA私钥解密
*
* @param str 加密字符串
* @param privateKey 私钥
* @return 铭文
*/
public static String decrypt(String str, String privateKey) {
//64位解码加密后的字符串
byte[] inputByte = Base64.decodeBase64(str.getBytes(StandardCharsets.UTF_8));
//base64编码的私钥
byte[] decoded = Base64.decodeBase64(privateKey);
RSAPrivateKey priKey = null;
//RSA解密
Cipher cipher = null;
String outStr = null;
try {
priKey = (RSAPrivateKey) KeyFactory.getInstance("RSA").generatePrivate(new PKCS8EncodedKeySpec(decoded));
cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.DECRYPT_MODE, priKey);
outStr = new String(cipher.doFinal(inputByte));
} catch (InvalidKeySpecException | NoSuchAlgorithmException | NoSuchPaddingException | BadPaddingException | IllegalBlockSizeException | InvalidKeyException e) {
e.printStackTrace();
logger.info(e.getMessage());
}
return outStr;
}
}
RSA加密的前端用法
前端用crypto-js进行加密,
npm i jsencrypt,
然后页面头引入import JSEncrypt from 'jsencrypt';
const encrypt = new JSEncrypt();
encrypt.setPublicKey('你的公钥');
password = encrypt.encrypt(‘你的密码’);// 加密后的字符串
后续
在实际应用中RSA加密也还是远远不够,一般还会加入MD5加密的方式,以及加密验证,token等等方式作为请求连接的校验,比如后端加密一个MD5字符串,给前端之后,前端用特定组合加上传输数据返回一个RSA加密的字符串,后端接收后解密,然后和自身的字符串进行对比,以确认数据来源的准确性.
这都是本人的浅浅理解,加密这一块水深似海,我不过是看到了小小的一点,如果内容有误欢迎各位大佬指正,谢谢.