- 05.静态代理设计模式
java
05.静态代理设计模式目录介绍01.静态代理模式基础1.1静态代理由来1.2静态代理定义1.3静态代理场景1.4静态代理思考02.静态代理原理与实现2.1罗列一个场景2.2用一个例子理解代理2.3案例演变分析03.静态代理分析3.1静态代理结构图3.2静态代理时序图04.代理模式优势4.1如何降低耦合4.2保护真实对象使用权限05.静态代理不足5.1静态代理类优缺点5.2静态代理缺乏灵活5.3静态
- AI人工智能代理工作流AI Agent WorkFlow:设计智能任务处理流程
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:设计智能任务处理流程作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在当今的数字化时代,随着数据量的爆炸式增长和复杂性的提升,传统的手动任务处理方式已经无法满足高效、准确的需求。人工智能技术的发展为自动化任务处理提供了新的可能性。AI人工智能代理(AIAgent)作为一
- 从基础到实践(十九):DC/DC由来和工作原理介绍
硬件进化论
嵌入式硬件单片机压力测试电脑智能手机数码相机智能手表
第一章DC/DC技术的起源与演进之路1.1电力革命的早期困境(1880s-1940s)在爱迪生与特斯拉的"电流战争"时期,直流供电系统暴露出传输损耗大的致命缺陷。尽管交流电最终成为电网主流,但直流电在终端设备供电的不可替代性催生了最早的电压转换需求。1930年代真空管收音机的普及使这一问题凸显:车载6V蓄电池需升压至200V以上供电子管工作,工程师们通过笨重的机械振动子式换流器(VibratorC
- 04.原型模式设计思想
java
04.原型模式设计思想目录介绍01.原型模式介绍1.1原型模式由来1.2原型模式定义1.3原型模式场景1.4原型模式思考02.原型模式原理与实现2.1罗列一个场景2.2用例子理解原型2.3案例演变分析2.4原型模式基本实现03.原型模式分析3.1原型模式VS工厂模式3.2原型模式VS深拷贝04.原型模式应用解析4.1使用clone方法4.2实现接口Cloneable4.3深克隆和浅克隆05.原型模
- 03.建造者模式设计思想
java
03.建造者模式设计思想目录介绍01.建造者模式介绍1.1建造者模式由来1.2建造者模式定义1.3建造者模式场景1.4建造者模式思考02.建造者模式实现2.1罗列一个场景2.2创造对象弊端场景2.3案例演变分析2.4用例子理解建造者03.建造者模式分析3.1建造者模式结构图3.2建造者模式时序图3.3基本代码实现04.建造者案例实践4.1盖房子案例开发4.2普通盖房子开发4.3构造者优化盖房子05
- 第十三章 Java多线程——阻塞队列
龙少丶
javajava开发语言
13.1阻塞队列的由来我们假设一种场景,生产者一直生产资源,消费者一直消费资源,资源存储在一个缓存池中,生产者将生产的资源存进缓存池中,消费者从缓存池中拿到资源进行消费,这就是大名鼎鼎的生产者-消费者模式。该模式能够简化开发过程,一方面消除了生产者与消费者类之间的代码依赖性,另方面将生产数据的过程与使用数据的过程解耦简单化负载。我们⾃⼰coding实现这个模式的时候,因为需要让多个线程操作共享变量
- 设计模式六大原则(3):依赖倒置原则
岸似达春绿
设计模式设计模式设计模式stringclass编程setterinterface
定义:高层模块不应该依赖低层模块,二者都应该依赖其抽象;抽象不应该依赖细节;细节应该依赖抽象。问题由来:类A直接依赖类B,假如要将类A改为依赖类C,则必须通过修改类A的代码来达成。这种场景下,类A一般是高层模块,负责复杂的业务逻辑;类B和类C是低层模块,负责基本的原子操作;假如修改类A,会给程序带来不必要的风险。解决方案:将类A修改为依赖接口I,类B和类C各自实现接口I,类A通过接口I间接与类B或
- 开发规范与编码标准原理与代码实战案例讲解
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
开发规范与编码标准原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming/TextGenWebUILLM开发规范与编码标准原理与代码实战案例讲解1.背景介绍1.1问题的由来随着软件工程的快速发展,尤其是在大型团队协作下开发复杂系统时,一致性、可读性、维护性成为影响代码质量的关键因素。不一致的开发风格、冗余的代码模式以及缺乏标准化的命名
- Dijkstra算法例题及解析
_gxd_
算法
最短路算法(2)——Dijkstra算法本章一共有三道例题。1.最短路2.TiltheCowsComeHome3.成语接龙1.最短路Description在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?FormatInput输入包括多组数据
- 大语言模型原理与工程实践:大语言模型强化对齐
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:大语言模型强化对齐作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的迅猛发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等,在自然语言处理(NLP)领域取得了显著的突破。这些模型在问答、翻译、文本生成等方面展现出惊人的能力,但同时也引发了
- 从零开始大模型开发与微调:PyTorch 2.0深度学习环境搭建
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch2.0深度学习环境搭建作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,大模型开发与微调成为了当前研究的热点。大模型能够学习到丰富的知识,并在各个下游任务上取得优异的性能。然而,大模型开发与微调需要强大的计算资源和专业的知识背景,这对于许多初学者和研究
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- 第01课:什么是微服务?
Wei_Cui_csdn
从零开始掌握微服务软件测试微服务测试DevOps
微服务的由来微服务的前身是PeterRodgers博士在2005年度云端运算博览会上提出的微Web服务(Micro-Web-Service)。微软的JuvalLöwy随后也提出了类似的想法,并提议将其作为微软下一阶段最主要的软件架构。2014年,MartinFowler与JamesLewis共同提出了微服务的概念,给出了微服务的具体定义:从本质上来说,微服务是一种架构模式。它是面向服务型架构(SO
- python+flask实现360全景图和stl等多种格式模型浏览
mosquito_lover1
python
1.安装依赖pipinstallflask2.创建Flask应用创建一个基本的Flask应用,并设置路由来处理不同的文件类型。fromflaskimportFlask,render_template,send_from_directoryapp=Flask(__name__)#设置静态文件路径app.static_folder='static'@app.route('/')defindex():r
- 从基础到实践(十四):LDO的由来与内部结构解析
硬件进化论
单片机嵌入式硬件压力测试集成测试安全性测试
LDO(低压差线性稳压器)是电子系统的“电压守门员”,能在极低压差下(如0.2V)稳定输出纯净电压,榨干电池电量延长续航,避免传统稳压器因压差不足宕机。其无高频噪声的特性,为传感器、射频模块等精密电路提供“无污染”电源,同时集成过流、过热保护,兼顾安全与高效,是便携设备和多电压系统中不可替代的“能源心脏”。一、LDO是什么?LDO全称低压差线性稳压器(LowDropoutRegulator),是一
- 从零开始大模型开发与微调:编码器的实现
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:编码器的实现作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:自然语言处理,大模型,Transformer架构,编码器模块,序列到序列学习文章目录从零开始大模型开发与微调:编码器的实现1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1编码器模块简介2.2编码器与Transfo
- 跨平台搜索:AI如何整合多渠道数据,提供最优的购买选择
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
跨平台搜索:AI如何整合多渠道数据,提供最优的购买选择1.背景介绍1.1问题由来随着互联网的普及和电子商务的兴起,消费者购买商品的方式日益多样化。传统的线下购物逐渐向线上转移,新兴的电商平台、社交媒体、短视频平台等纷纷涌现,为消费者提供更多选择。然而,这种多渠道购买环境也带来了挑战:信息碎片化:消费者在多个平台浏览、对比产品信息,难以全面获取所有相关数据。价格竞争激烈:不同平台的价格差异巨大,消费
- MM--MIGO的屏幕格式由来学习
iteye_9825
CC++C#Go配置管理
migo的屏幕格式的由来migo的屏幕格式是根据用户选择的操作,由操作决定参考单据(操作和参考单据有个固定关系,在次关系基础上用户可以配置哪些TCODE可以使用哪些操作,操作参照哪些文档),在根据用输入的操作和参考文档,系统内部决定交易/事件类型,交易/事件类型内部决定操作代码(migo_mode),有了操作代码就决定了屏幕的格式。具体内容和代码请参见下面的摘抄。GOACTION:MIGO事务中执
- 大模型问答机器人如何实现自然交互
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
大模型问答机器人如何实现自然交互关键词:大模型问答机器人,自然语言处理(NLP),深度学习,深度对话,多轮对话,意图理解,信息检索,逻辑推理1.背景介绍1.1问题由来近年来,随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了巨大的突破。特别是深度学习模型在自然语言理解和生成方面的卓越表现,使得基于深度学习的大模型问答机器人(LargeLanguageModel-basedChatbots
- 智能制造中的工业大数据分析实践
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
智能制造中的工业大数据分析实践关键词:智能制造,工业大数据,数据分析,机器学习,深度学习,预测性维护,质量控制,生产优化文章目录智能制造中的工业大数据分析实践1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1工业大数据2.2工业大数据分析2.3智能制造3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.
- 多模态大模型:技术原理与实战 模型压缩实战
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战模型压缩实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大模型,技术原理,模型压缩,实战,TensorFlow,PyTorch,模型压缩方法,应用场景1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,多模态大模型在图像识别、语音识别、自然语言处理等领域的应用越来越广泛。然而,多模态大模型通常具有庞大
- Python机器学习实战:使用Flask构建机器学习API
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:使用Flask构建机器学习API作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在数据科学和机器学习领域,模型训练和部署一直是重要的挑战。传统的机器学习项目往往采用独立的脚本或复杂的流程,难以实现模型的自动化、可视化和复现。为了解决这一问题,将机器学习模型封装成可访问的API变得越来越流行。Fla
- webpack
码上跑步
webpack前端node.js
webpack介绍webpack是一个构建工具,实现了模块化管理项目.他的工作方式是用各种loader将各种资源转化为js文件或者对js文件进行压缩编译亦或对静态资源进行处理.官网:webpack由来模块化存在一些问题1.ESM的兼容性问题2.模块文件过多,网络请求频繁3.前端的所有资源包括html和css都需要模块化构建工具应运而生,需要一个集编译,模块打包,支持不同的资源的模块打包工具.Web
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- 基于讯飞星火的语音问答
哎呦☞ᨐ
语音识别人工智能语言模型文心一言opencv
一.简介项目基于讯飞星火api作为核心能力并在其中搭载了WebSpeechAPI中的webkitSpeechRecognition对象来实现语音转文字的功能和TTS(Text-to-Speech):通过调用百度TTSAPI将文本转换成语音,使机器人能够“说话”。实现了语音输入,语音输出的对话形式。实现方法:后端基于python的flask框架,前端使用了html+css并用AJAX通过XMLHtt
- Python|基于DeepSeek大模型,自动生成语料数据(10)
写python的鑫哥
AI大模型实战应用人工智能python大模型DeepSeek生成语料数据
前言本文是该专栏的第10篇,后面会持续分享AI大模型干货知识,记得关注。在本专栏之前,笔者在文章《Python|基于DeepSeek大模型,实现文本内容仿写(8)》中,有详细介绍通过Python+DeepSeek大模型,实现对目标文本内容的仿写。而在本文中,笔者将基于DeepSeek大模型,通过Python来实现“自动生成目标语料数据”,并对生成的语料数据进行json格式存储,以及docx文档形式
- 网络原理(五):HTTPS - 加密 & SSL 握手流程
Sunrise_angel
JavaEE初阶https网络协议http网络
目录1.什么是HTTPS1.1HTTPS的由来2.加密1.2对称加密/非对称加密3.HTTPS的工作原理(SSL的握手过程)[面试高频考点]3.1引入对称加密3.2引入非对称加密3.2.1非对称加密,加密对称密钥3.2.2中间人攻击3.3引入校验机制3.3.1证书3.3.1.1数字签名3.3.2客户端校验1.什么是HTTPSHTTPS也是应用层的一个协议,是在HTTP的基础上引入了一个加密层,使得
- AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美关键词:AI生成内容(AIGC),ChatGPT,Midjourney,中国古风,创意设计,艺术表达1.背景介绍1.1问题由来人工智能生成内容(ArtificialIntelligenceGeneratedContent,AIGC)作为AI技术的重要分支,近年来在视觉、音乐、文本等多个领域取得了显著进展,引领了内容创作
- 三分钟!快速了解 DeepSeek-VL视觉语言大模型!
安意诚Matrix
机器学习笔记人工智能transformer
两张图三分钟代码和文档介绍详见GitHub:https://github.com/deepseek-ai/DeepSeek-VL/tree/main/deepseek_vl下面用两张图三分钟,介绍一下DeepSeek-VL。模型结构这张图展示了DeepSeek-MoE模型处理视觉输入并生成语言输出的流程,具体如下:图像预处理:右下角的实际图像(有南瓜等装饰的场景图)首先通过“DynamicTili
- swagger-01-swagger介绍
褚师子书
swaggerjavaspringbootrestful
swagger1.学习目标:了解前后端分离了解Swagger的作用和概念在SpringBoot中集成Swagger1.1swagger由来前后端分离,当前流行的开发模式Vue+SpringBoot早先的后端时代:前端只用管理静态页面;后端将html用模板引擎JSP进行开发前后端分离式时代:后端:后端控制层,服务层,数据访问层【后端团队】前端:前端控制层,视图层【前端团队】mock后端数据json,
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比