- 「Python数据分析」Pandas基础,筛选数据利器:布尔索引
奕澄羽邦
python数据分析pandas
我们在处理数据的时候,数据筛选是一个重要的过程。利用布尔索引,我们可以选择需要的数据区间。布尔索引,是利用各种不等式,以及与或非操作,来对数据区间进行选择。在pandas中,与操作,对应的是&这个符号,表示选取两个数据集重合的部分。或操作,对应的是|这个符号,表示选择两个数据集中,只要在一个数据集中出现的部分。非操作,对应的是~这个符号,表示选取一个数据集中,相反的部分。我们下面通过具体的例子,来
- 【Dive Into Stable Diffusion v3.5】1:开源项目正式发布——深入探索SDv3.5模型全参/LoRA/RLHF训练
Donvink
大模型#AIGCstablediffusionAIGC人工智能机器学习深度学习
目录1引言2项目简介3快速上手3.1下载代码3.2环境配置3.3项目结构3.4下载模型与数据集3.5运行指令3.6核心参数说明3.6.1通用参数3.6.2优化器/学习率3.6.3数据相关4结语1引言在人工智能和机器学习领域,生成模型的应用越来越广泛。StableDiffusion作为其中的佼佼者,因其强大的图像生成能力而备受关注。今天,我的开源项目DiveIntoStableDiffusionv3
- PyTorch 深度学习实战(19):离线强化学习与 Conservative Q-Learning (CQL) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们探讨了分布式强化学习与IMPALA算法,展示了如何通过并行化训练提升强化学习的效率。本文将聚焦离线强化学习(OfflineRL)这一新兴方向,并实现ConservativeQ-Learning(CQL)算法,利用Minari提供的静态数据集训练安全的强化学习策略。一、离线强化学习与CQL原理1.离线强化学习的特点无需环境交互:直接从预收集的静态数据集学习数据效率高:复用历史经验
- 【科研必备】EI/Scopus收录!2025年3-4月智能制造、自动化、无人驾驶、人工智能等前沿领域国际会议邀您参与~与全球学者交流,让学术之光在国际舞台上闪耀!
努力毕业的小土博^_^
学术会议推荐制造自动化人工智能深度学习神经网络算法
【科研必备】EI/Scopus收录!2025年3-4月智能制造、无人驾驶、人工智能等前沿领域国际会议邀您参与~与全球学者交流,让学术之光在国际舞台上闪耀!【科研必备】EI/Scopus收录!2025年3-4月智能制造、无人驾驶、人工智能等前沿领域国际会议邀您参与~与全球学者交流,让学术之光在国际舞台上闪耀!文章目录【科研必备】EI/Scopus收录!2025年3-4月智能制造、无人驾驶、人工智能等
- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- 使用python seaborn创建配对图:从核心概念到实战案例
梦想画家
数据分析工程#python人工智能python机器学习
Seaborn的配对图(Pairplot)是一种用于探索多变量数据关系的可视化工具,尤其适合分析数据集中多个特征之间的相关性、分布模式或异常值。本文介绍如何生成数据集数值变量之间的配对图,并通过参数设置色系。配对图的核心作用矩阵式可视化生成一个N×N的网格图(N为特征数),每个单元格展示两列特征之间的关系。默认对角线显示单变量分布(直方图或KDE曲线),非对角线显示散点图或其他关系图。快速发现模式
- 本福特定律: 为什么银行存款、河流长度等集合的首位数字更容易出现 1 而不是 9?
go
银行存款、河流长度等数据的首位数字更容易出现1而不是9,这背后的数学原理是本福特定律(Benford'sLaw)。本福特定律的概述本福特定律(Benford'sLaw)又称首位数字定律,是一种描述自然生成数据中数字分布规律的统计学现象。该定律揭示了在多种实际数据集中,数字1-9作为首位数字出现的概率呈现特定规律性分布。数学表达式首位数字d出现的概率为:P(d)=log₁₀(1+1/d),其中d∈{
- 模型微调:让AI更懂你的魔法棒
带上一无所知的我
pytorch人工智能python
模型微调:让AI更懂你的魔法棒✨在人工智能的世界里,模型微调(Fine-tuning)就像是一位魔法师用魔法棒对预训练模型进行“个性化改造”,让它更适应特定的任务。今天,我们就来深入探讨模型微调的技术细节,让你也能像魔法师一样,轻松驾驭AI模型!什么是模型微调?模型微调是指在预训练模型的基础上,通过少量的特定任务数据进行训练,使模型更好地适应新任务的技术。预训练模型通常是基于大规模数据集(如Ima
- 【十 自然语言处理项目实战】【10.2 数据收集与预处理】
再见孙悟空_
#自然语言处理人工智能知识图谱transformer自然语言处理数据收集自然语言处理预处理自然语言处理项目
各位在数据泥潭里打滚的勇士们,今天咱们要聊的这个话题,就像学做川菜必须掌握的"火锅底料炒制法"——数据收集与预处理!这玩意儿看着像脏活累活,实则是决定你模型上限的生死关卡。作为一个曾把BERT训成人工智障的老司机,这就把五年掉坑经验熬成一锅十全大补汤!(戴上橡胶手套准备掏数据)一、数据收集的野路子:比盗墓还刺激的冒险1.1公开数据集寻宝图(附藏宝坐标)①正道的光:Kaggle(数据界的沃尔玛):搜
- 根据论文复现大模型方法以及出错处理技巧
Ai玩家hly
从0倒1论文复现大模型复现Ai大模型复现
复现一篇论文中的大模型搭建涉及以下几个关键步骤:理解论文的模型架构、数据集处理、超参数设置以及实验环境的搭建。这里给出一个基本的实现方法示例,假设我们选择复现一个图像分类任务中的经典模型,例如ResNet。实现步骤示例1.理解论文和模型架构选择一篇关于ResNet的论文作为示例,例如《DeepResidualLearningforImageRecognition》(Heetal.,2015)。2.
- 全网独家 | 超级POI数据集:27.3亿条,涵盖2018-2024年,7年44份,全国范围、同源、相同处理方法、字段丰富
空间数据研究所
全国同源历史POI数据空间数据研究所历史POIPOI数据全国同源历史POI兴趣点超级POI数据集
超级POI数据集概况时间范围:2018年12月至2024年12月覆盖区域:全国所有省、直辖市、自治区和特别行政区数据总量:2,731,535,499条数据格式:支持SHP、FileGDB、GeoJson、MIF/TAB、TXT、Excel、CSV坐标系统:可以提供WGS84、GCJ02、BD09等常见坐标系提供形式:本地矢量数据文件数据选择:可根据指定的城市、省,类别,时间提供相应数据文件数据来源
- Python 生成数据(使用Pygal模拟掷骰子)
钢铁男儿
Python从入门到精通python开发语言
数据可视化指的是通过可视化表示来探索数据,它与数据挖掘紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联。数据集可以是用一行代码就能表示的小型数字列表,也可以是数以吉字节的数据。使用Pygal模拟掷骰子在本节中,我们将使用Python可视化包Pygal来生成可缩放的矢量图形文件。对于需要在尺寸不同的屏幕上显示的图表,这很有用,因为它们将自动缩放,以适合观看者的屏幕。如果你打算以在线方式使用
- 使用 TensorFlow 进行图像处理:深度解析卷积神经网络(CNN)
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow图像处理cnn人工智能机器学习pythonai
目录使用TensorFlow进行图像处理:深度解析卷积神经网络(CNN)1.什么是卷积神经网络(CNN)?CNN的基本结构为什么CNN适合图像处理?2.使用TensorFlow构建CNN2.1环境准备2.2加载并预处理MNIST数据集2.3构建CNN模型2.4编译和训练模型2.5评估模型3.CNN的优化与改进3.1使用数据增强3.2调整网络结构4.CNN在其他图像处理任务中的应用5.总结参考文献在
- SQL语言的散点图
苏墨瀚
包罗万象golang开发语言后端
SQL语言的散点图引言在数据科学和数据分析的领域中,数据可视化是一项重要的技能。有效的数据可视化可以帮助我们理解复杂的数据集,发现数据中的潜在规律,进而支持决策制定。散点图作为一种基本而有效的数据可视化形式,广泛应用于各种领域。本文将深入探讨散点图的概念、使用场景、SQL查询与散点图的结合,以及如何通过SQL语言生成散点图。散点图的定义与特点散点图是一种二维图形,用来展示两个变量之间的关系。每个点
- 智慧城市道路防护栏破损缺陷检测数据集VOC+YOLO格式6939张3类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):6939标注数量(xml文件个数):6939标注数量(txt文件个数):6939标注类别数:3标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["body","cr
- 利用 HAI 平台进行 DeepSeek 模型训练的详细指南
摘要本文旨在为非专业用户提供在HAI平台上进行DeepSeek模型训练的详细步骤。从创建项目、上传数据集、配置训练参数到启动训练任务并监控训练过程,本文将逐步指导用户完成整个流程。此外,本文还包含可运行的示例代码模块和相关章节配图,以帮助用户更好地理解和操作。引言HAI(HyperAI)平台是一个强大的AI模型训练平台,但对于非专业用户来说,其复杂性可能会成为使用的障碍。本文将详细介绍如何在HAI
- 基于传感器数据的城市空气质量预测与污染源分类
云端.代码农夫CloudFarmer
分类数据挖掘人工智能
项目名称:基于传感器数据的城市空气质量预测与污染源分类创新点:结合时间序列预测(回归)与污染源分类(多标签分类),使用公开API获取实时数据。项目目标预测未来6小时的空气质量指数(AQI)。根据传感器数据判断可能的污染源类型(如工业排放、交通尾气、扬尘等)。数据集来源数据获取:通过开放API实时抓取(如OpenAQ、AirNow或国内公开的城市空气质量平台)。特征示例:PM2.5、PM10、SO2
- 大数据和人工智能概念全面解析
就犯得上方法
一、大数据和人工智能大数据是伴随着信息数据爆炸式增长和网络计算技术迅速发展而兴起的一个新型概念。根据麦肯锡全球研究所的定义,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据能够帮助各行各业的企业从原本毫无价值的海量数据中挖掘出用户的需求,使数据能够从量变到质变,真正产生价值
- 使用LangSmith Chat Datasets微调模型
scaFHIO
python人工智能机器学习
在这篇文章中,我们将探讨如何通过LangSmithChatDatasets轻松微调模型。这一过程分为三个简单的步骤:创建聊天数据集。使用LangSmithDatasetChatLoader加载示例。微调你的模型。微调后,您可以在LangChain应用中使用微调过的模型。在深入探讨之前,我们需要安装一些前置条件。前置条件确保您已经安装了langchain>=0.0.311并准备好LangSmithA
- Hadoop相关面试题
努力的搬砖人.
java面试hadoop
以下是150道Hadoop面试题及其详细回答,涵盖了Hadoop的基础知识、HDFS、MapReduce、YARN、HBase、Hive、Sqoop、Flume、ZooKeeper等多个方面,每道题目都尽量详细且简单易懂:Hadoop基础概念类1.什么是Hadoop?Hadoop是一个由Apache基金会开发的开源分布式计算框架,主要用于处理和存储大规模数据集。它提供了高容错性和高扩展性的分布式存
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- 做电池寿命预测有福了---2024最新退化数据集,来自cell子刊
优化算法侠Swarm-Opti
深度学习数据集电池寿命预测深度学习人工智能
引言本期介绍2024年最新发表在cell子刊CellReportsPhysicalScience上的电池退化数据集。该数据集是世界上规模最大,最贴近实际运行场景,持续时间最长的电池退化数据集。在实验室和现实生活中对电池退化进行了为期4年的广泛实验调查,考虑了随机充放电电流、频率、深度以及多电池成组、环境温度的影响,涉及数百个电池和电池组的大约546,000次充放电循环。参考文献DongzhenLy
- MMScan数据集:首个最大的多模态3D场景数据集,包含层次化的语言标注
数据集
2024-10-24,由上海人工智能实验室联合多所高校创建了MMScan,这是迄今为止最大的多模态3D场景数据集,包含了层次化的语言标注。数据集的建立,不仅推动了3D场景理解的研究进展,还为训练和评估多模态3D感知模型提供了宝贵的资源。一、研究背景:随着大型语言模型(LLMs)的兴起和与其他数据模态的融合,多模态3D感知因其与物理世界的连接而受到越来越多的关注,并取得了快速进展。然而,现有的数据集
- linux下安装卸载永中office步骤,永中集成Office For Linux安装图文指南及简介
weixin_39625975
永中集成OfficeForLinux安装图文指南及简介永中集成Office在一套标准的用户界面下集成了文字处理、电子表格和简报制作三大应用,提供自选图形、艺术字、剪贴画、图表和科教编辑器等附加功能;基于创新的数据对象储藏库专利技术,有效解决了Office各应用之间的数据集成问题,构成了一套独具特色的集成办公软件。永中集成Office用户界面和使用方式与常见Office相似,易学易用;能够双向精确兼
- 使用Pinecone实现自查询检索器的实现步骤
vaidfl
python
##技术背景介绍Pinecone是一款功能强大的向量数据库,适用于处理复杂的检索需求。在本文中,我们将演示如何结合Pinecone向量存储使用SelfQueryRetriever实现自查询功能。为了更方便的了解原理,我们将以电影总结数据集为例进行展示。##核心原理解析自查询检索器(SelfQueryRetriever)的核心思想是通过提供文档的元数据和内容描述,结合语言模型生成查询条件来完成数据检
- Yolov8训练自己的数据集(脱离ultralytics库)
爱吃肉的鹏
YOLO
最近在整理关于yolov8的相关内容,有个很大的问题,抛开yolov8性能不谈,yolov8代码的使用灵活性不如yolov5,尤其是对于一些新手或者对yolo框架不是很熟悉的人(这也是因人而异,有些人可能会喜欢v8代码的使用方式)。比如在使用v8的时候需要安装ultralytics库,然后再调用YOLO进行训练或者预测,那么就有这几个问题:问题1:安装了ultralytics库后如何使用YOLO呢
- 迁移学习基础知识
zhooooooou
深度学习迁移学习人工智能机器学习
简介使用迁移学习的优势:1、能够快速的训练出一个理想的结果2、当数据集较小时也能训练出理想的效果。注意:在使用别人预训练的参数模型时,要注意别人的预处理方式。原理:对于浅层的网络结构,他们学习到的角点信息和纹理信息都是通用的,将学习好的浅层网络的信息迁移到新的网络中,这样新的网络也拥有了识别底层通用特征的能力,从而能加快网络学习新的数据集的高维特征。常见的迁移学习的方式:1、载入权重后训练所有参数
- SciER:首个大规模科学文档中的实体和关系抽取数据集
数据集
2024-10-28,为科学文档中的实体和关系抽取领域带来了突破,提供了一个包含106篇完整科学出版物、超过24,000个实体和12,000个关系的大规模数据集,这对于构建科学知识图谱和促进科学信息抽取技术的发展具有重要意义。数据集地址:SciER|科学信息提取数据集|人工智能数据集一、研究背景:在科学文档中,实体(如数据集、方法、任务)和它们之间的关系对于理解科学发现和推动研究进展至关重要。然而
- 使用LoRA微调LLaMA3
想胖的壮壮
深度学习人工智能
使用LoRA微调LLaMA3的案例案例概述在这个案例中,我们将使用LoRA微调LLaMA3模型,进行一个文本分类任务。我们将使用HuggingFace的Transformers库来完成这个过程。步骤一:环境搭建安装必要的Python包pipinstalltransformersdatasetstorch配置GPU环境确保你的环境中配置了CUDA和cuDNN,并验证GPU是否可用。importtor
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多