VGA(Video Graphics Array)视频图形阵列是IBM于1987年提出的一个使用模拟信号的电脑显示标准。VGA接口即电脑采用VGA标准输出数据的专用接口。VGA接口共有15针,分成3排,每排5个孔,显卡上应用最为广泛的接口类型,绝大多数显卡都带有此种接口。它传输红、绿、蓝模拟信号以及同步信号(水平和垂直信号)。
VGA接口是一种D型接口,上面共有15针孔,分成三排,每排五个。 其中,除了2根NC(Not Connect)信号、3根显示数据总线和5个GND信号,比较重要的是3根RGB彩色分量信号和2根扫描同步信号HSYNC和VSYNC针。VGA接口中彩色分量采用RS343电平标准。RS343电平标准的峰值电压为1V。VGA接口是显卡上应用最为广泛的接口类型,多数的显卡都带有此种接口。有些不带VGA接口而带有DVI(Digital Visual Interface数字视频接口)接口的显卡,也可以通过一个简单的转接头将DVI接口转成VGA接口,通常没有VGA接口的显卡会附赠这样的转接头。
大多数计算机与外部显示设备之间都是通过模拟VGA接口连接,计算机内部以数字方式生成的显示图像信息,被显卡中的数字/模拟转换器转变为R、G、B三原色信号和行、场同步信号,信号通过电缆传输到显示设备中。对于模拟显示设备,如模拟CRT显示器,信号被直接送到相应的处理电路,驱动控制显像管生成图像。而对于LCD、DLP等数字显示设备,显示设备中需配置相应的A/D(模拟/数字)转换器,将模拟信号转变为数字信号。在经过D/A和A/D两次转换后,不可避免地造成了一些图像细节的损失。VGA接口应用于CRT显示器无可厚非,但用于连接液晶之类的显示设备,则转换过程的图像损失会使显示效果略微下降。
而且可以从接口处来判断显卡是独显还是集成显卡,VGA接口竖置的说明是集成显卡,VGA接口横置说明是独立显卡(一般的台式主机都可以用此方法来查看)。
管脚 | 定义 | 管脚 | 定义 |
---|---|---|---|
1 | 红基色 | 9 | 保留(各家定义不同) |
2 | 绿基色 | 10 | 数字码 |
3 | 蓝基色 | 11 | 地址码 |
4 | 地址码 ID Bit | 12 | 地址码 |
5 | 自测试 | 13 | 行同步 |
6 | 红地 | 14 | 场同步 |
7 | 绿地 | 15 | 地址码(各家定义不同) |
8 | 绿地 |
VGA通过引脚的模拟电压(0V-0.714V)显示红绿蓝三种颜色,不同的电压值对应不同的颜色。
VGA驱动显示器用的是扫描的方式,一般是逐行扫描。
逐行扫描是扫描从屏幕左上角一点开始,从左像右逐点扫描,每扫描完一行,电子束回到屏幕的左边下一行的起始位置,在这期间,CRT对电子束进行消隐,每行结束时,用行同步信号进行同步;
当扫描完所有的行,形成一帧后,用场同步信号进行场同步,并使扫描回到屏幕左上方,同时进行场消隐,开始下一帧。
FPGA芯片驱动VGA显示,需要先产生模拟信号,这就要借助数模转换器D/A,利用D/A产生模拟信号,输出至VGA的RED、GREEN、BLUE基色数据线。另一种方法是利用电阻网络分流模拟D/A实现的。
具体颜色对应的电压值:
RED | GREEN | BLUE | 颜色 |
---|---|---|---|
0.714V | 0V | 0V | 红色 |
0V | 0.714V | 0V | 绿色 |
0V | 0V | 0.714V | 蓝色 |
0V | 0V | 0.354V | 暗蓝色 |
0V | 0V | 0V | 黑色 |
VS:帧时序
帧时序的四个部分别是:同步脉冲(Sync o)、显示后沿(Back porch p)、显示时序段(Display interval q)和显示前沿(Front porchr)。其中同步脉冲(Sync o)、显示后沿(Back porch p)和显示前沿(Front porch r)是消隐区,RGB信号无效,屏幕不显示数据。显示时序段(Display interval q)是有效数据区。
行时序:
行时序的四个部分分别是:同步脉冲(Sync a)、显示后沿(Back porch b)、显示时序(Display interval c)和显示前沿(Front porchd)。其中同步脉冲(Sync a)、显示后沿(Back porch b)和显示前沿(Front porch d)是消隐区,RGB信号无效,屏幕不显示数据。显示时序段(Display interval c)是有效数据区。
首先,这里需要请出我们的一个老朋友,汉字点阵,就是一个很早之前的OLED汉字显示里使用过的,基于IIC和SPI协议的温湿度采集与OLED显示,但是我当时有点懒,没有写这个部分的具体安装方法只有取出字模的过程,所以这里建议各位移步他处。
(这里推荐个很好用的网站中文点阵生成软件)
这里仅提供取出字模示例,这里建议找个文本文件把这些内容保存起来。
还是老朋友quartus,打开它,新建工程,使用芯片EP4CE115F29C7,然后找到file new Verilog,插入代码
module VGA_test(
OSC_50, //原CLK2_50时钟信号
VGA_CLK, //VGA自时钟
VGA_HS, //行同步信号
VGA_VS, //场同步信号
VGA_BLANK, //复合空白信号控制信号 当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC, //符合同步控制信号 行时序和场时序都要产生同步脉冲
VGA_R, //VGA绿色
VGA_B, //VGA蓝色
VGA_G); //VGA绿色
input OSC_50; //外部时钟信号CLK2_50
output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
output [7:0] VGA_R,VGA_B,VGA_G;
parameter H_FRONT = 16; //行同步前沿信号周期长
parameter H_SYNC = 96; //行同步信号周期长
parameter H_BACK = 48; //行同步后沿信号周期长
parameter H_ACT = 640; //行显示周期长
parameter H_BLANK = H_FRONT+H_SYNC+H_BACK; //行空白信号总周期长
parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT; //行总周期长耗时
parameter V_FRONT = 11; //场同步前沿信号周期长
parameter V_SYNC = 2; //场同步信号周期长
parameter V_BACK = 31; //场同步后沿信号周期长
parameter V_ACT = 480; //场显示周期长
parameter V_BLANK = V_FRONT+V_SYNC+V_BACK; //场空白信号总周期长
parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT; //场总周期长耗时
reg [10:0] H_Cont; //行周期计数器
reg [10:0] V_Cont; //场周期计数器
wire [7:0] VGA_R; //VGA红色控制线
wire [7:0] VGA_G; //VGA绿色控制线
wire [7:0] VGA_B; //VGA蓝色控制线
reg VGA_HS;
reg VGA_VS;
reg [10:0] X; //当前行第几个像素点
reg [10:0] Y; //当前场第几行
reg CLK_25;
always@(posedge OSC_50)
begin
CLK_25=~CLK_25; //时钟
end
assign VGA_SYNC = 1'b0; //同步信号低电平
assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK)); //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
assign VGA_CLK = ~CLK_to_DAC; //VGA时钟等于CLK_25取反
assign CLK_to_DAC = CLK_25;
always@(posedge CLK_to_DAC)
begin
if(H_Cont<H_TOTAL) //如果行计数器小于行总时长
H_Cont<=H_Cont+1'b1; //行计数器+1
else H_Cont<=0; //否则行计数器清零
if(H_Cont==H_FRONT-1) //如果行计数器等于行前沿空白时间-1
VGA_HS<=1'b0; //行同步信号置0
if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
VGA_HS<=1'b1; //行同步信号置1
if(H_Cont>=H_BLANK) //如果行计数器大于等于行空白总时长
X<=H_Cont-H_BLANK; //X等于行计数器-行空白总时长 (X为当前行第几个像素点)
else X<=0; //否则X为0
end
always@(posedge VGA_HS)
begin
if(V_Cont<V_TOTAL) //如果场计数器小于行总时长
V_Cont<=V_Cont+1'b1; //场计数器+1
else V_Cont<=0; //否则场计数器清零
if(V_Cont==V_FRONT-1) //如果场计数器等于场前沿空白时间-1
VGA_VS<=1'b0; //场同步信号置0
if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
VGA_VS<=1'b1; //场同步信号置1
if(V_Cont>=V_BLANK) //如果场计数器大于等于场空白总时长
Y<=V_Cont-V_BLANK; //Y等于场计数器-场空白总时长 (Y为当前场第几行)
else Y<=0; //否则Y为0
end
reg valid_yr;
always@(posedge CLK_to_DAC)
if(V_Cont == 10'd32) //场计数器=32时
valid_yr<=1'b1; //行输入激活
else if(V_Cont==10'd512) //场计数器=512时
valid_yr<=1'b0; //行输入冻结
wire valid_y=valid_yr; //连线
reg valid_r;
always@(posedge CLK_to_DAC)
if((H_Cont == 10'd32)&&valid_y) //行计数器=32时
valid_r<=1'b1; //像素输入激活
else if((H_Cont==10'd512)&&valid_y) //行计数器=512时
valid_r<=1'b0; //像素输入冻结
wire valid = valid_r; //连线
wire[10:0] x_dis; //像素显示控制信号
wire[10:0] y_dis; //行显示控制信号
assign x_dis=X; //连线X
assign y_dis=Y; //连线Y
//修改下方的内容,就改为之前存在文本文件里的字符串,注意开头要有一个h开头
parameter
char_line00=240'h000020000000000000000000000000000000000000000000000000000000,
char_line01=240'h27fc11f87ffc000000000000000000000000000000000000000000000000,
char_line02=240'h104011080100000000000000000000000000000000000000000000000000,
char_line03=240'h1040f908010018003c003c00180018007e001800180018003c0008007e00,
char_line04=240'h804009080100240042004200240024004200240024002400420038004200,
char_line05=240'h404011f80100400042004200420042000400420040004200420008000400,
char_line06=240'h404011081100400002004200420042000400420040004200020008000400,
char_line07=240'h13fc390811f85c000400020042004200080042005c004200040008000800,
char_line08=240'h104055081100620018000400420042000800420062004200180008000800,
char_line09=240'h204095f81100420004000800420042001000420042004200040008001000,
char_line0a=240'he04011081100420002001000420042001000420042004200020008001000,
char_line0b=240'h204011081100420042002000420042001000420042004200420008001000,
char_line0c=240'h204011081100220042004200240024001000240022002400420008001000,
char_line0d=240'h2040110811001c003c007e0018001800100018001c0018003c003e001000,
char_line0e=240'h2ffe17fefffe000000000000000000000000000000000000000000000000,
char_line0f=240'h000010000000000000000000000000000000000000000000000000000000;
reg[7:0] char_bit;
always@(posedge CLK_to_DAC)
if(X==10'd180)char_bit<=9'd240; //当显示到144像素时准备开始输出图像数据
else if(X>10'd180&&X<10'd420) //左边距屏幕144像素到416像素时 416=144+272(图像宽度)
char_bit<=char_bit-1'b1; //倒着输出图像信息
reg[29:0] vga_rgb; //定义颜色缓存
always@(posedge CLK_to_DAC)
if(X>10'd180&&X<10'd420) //X控制图像的横向显示边界:左边距屏幕左边144像素 右边界距屏幕左边界416像素
begin case(Y) //Y控制图像的纵向显示边界:从距离屏幕顶部160像素开始显示第一行数据
10'd200:
if(char_line00[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000; //如果该行有数据 则颜色为红色
else vga_rgb<=30'b0000000000_0000000000_0000000000; //否则为黑色
10'd201:
if(char_line01[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd202:
if(char_line02[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd203:
if(char_line03[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd204:
if(char_line04[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd205:
if(char_line05[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd206:
if(char_line06[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd207:
if(char_line07[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd208:
if(char_line08[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd209:
if(char_line09[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd210:
if(char_line0a[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd211:
if(char_line0b[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd212:
if(char_line0c[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd213:
if(char_line0d[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd214:
if(char_line0e[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd215:
if(char_line0f[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
default:vga_rgb<=30'h0000000000; //默认颜色黑色
endcase
end
else vga_rgb<=30'h000000000; //否则黑色
assign VGA_R=vga_rgb[23:16];
assign VGA_G=vga_rgb[15:8];
assign VGA_B=vga_rgb[7:0];
endmodule
直接使用代码吧,基本的工程操作和新建都是大同小异的,而且基本上也不会有报错
module VGA_colorbar_test(
OSC_50, //原CLK2_50时钟信号
VGA_CLK, //VGA自时钟
VGA_HS, //行同步信号
VGA_VS, //场同步信号
VGA_BLANK, //复合空白信号控制信号 当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC, //符合同步控制信号 行时序和场时序都要产生同步脉冲
VGA_R, //VGA绿色
VGA_B, //VGA蓝色
VGA_G); //VGA绿色
input OSC_50; //外部时钟信号CLK2_50
output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
output [7:0] VGA_R,VGA_B,VGA_G;
parameter H_FRONT = 16; //行同步前沿信号周期长
parameter H_SYNC = 96; //行同步信号周期长
parameter H_BACK = 48; //行同步后沿信号周期长
parameter H_ACT = 640; //行显示周期长
parameter H_BLANK = H_FRONT+H_SYNC+H_BACK; //行空白信号总周期长
parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT; //行总周期长耗时
parameter V_FRONT = 11; //场同步前沿信号周期长
parameter V_SYNC = 2; //场同步信号周期长
parameter V_BACK = 31; //场同步后沿信号周期长
parameter V_ACT = 480; //场显示周期长
parameter V_BLANK = V_FRONT+V_SYNC+V_BACK; //场空白信号总周期长
parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT; //场总周期长耗时
reg [10:0] H_Cont; //行周期计数器
reg [10:0] V_Cont; //场周期计数器
wire [7:0] VGA_R; //VGA红色控制线
wire [7:0] VGA_G; //VGA绿色控制线
wire [7:0] VGA_B; //VGA蓝色控制线
reg VGA_HS;
reg VGA_VS;
reg [10:0] X; //当前行第几个像素点
reg [10:0] Y; //当前场第几行
reg CLK_25;
always@(posedge OSC_50)begin
CLK_25=~CLK_25; //时钟
end
assign VGA_SYNC = 1'b0; //同步信号低电平
assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK)); //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
assign VGA_CLK = ~CLK_to_DAC; //VGA时钟等于CLK_25取反
assign CLK_to_DAC = CLK_25;
always@(posedge CLK_to_DAC)begin
if(H_Cont<H_TOTAL) //如果行计数器小于行总时长
H_Cont<=H_Cont+1'b1; //行计数器+1
else H_Cont<=0; //否则行计数器清零
if(H_Cont==H_FRONT-1) //如果行计数器等于行前沿空白时间-1
VGA_HS<=1'b0; //行同步信号置0
if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
VGA_HS<=1'b1; //行同步信号置1
if(H_Cont>=H_BLANK) //如果行计数器大于等于行空白总时长
X<=H_Cont-H_BLANK; //X等于行计数器-行空白总时长 (X为当前行第几个像素点)
else X<=0; //否则X为0
end
always@(posedge VGA_HS)begin
if(V_Cont<V_TOTAL) //如果场计数器小于行总时长
V_Cont<=V_Cont+1'b1; //场计数器+1
else V_Cont<=0; //否则场计数器清零
if(V_Cont==V_FRONT-1) //如果场计数器等于场前沿空白时间-1
VGA_VS<=1'b0; //场同步信号置0
if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
VGA_VS<=1'b1; //场同步信号置1
if(V_Cont>=V_BLANK) //如果场计数器大于等于场空白总时长
Y<=V_Cont-V_BLANK; //Y等于场计数器-场空白总时长 (Y为当前场第几行)
else Y<=0; //否则Y为0
end
reg valid_yr;
always@(posedge CLK_to_DAC)begin
if(V_Cont == 10'd32) //场计数器=32时
valid_yr<=1'b1; //行输入激活
else if(V_Cont==10'd512) //场计数器=512时
valid_yr<=1'b0; //行输入冻结
end
wire valid_y=valid_yr; //连线
reg valid_r;
always@(posedge CLK_to_DAC)begin
if((H_Cont == 10'd32)&&valid_y) //行计数器=32时
valid_r<=1'b1; //像素输入激活
else if((H_Cont==10'd512)&&valid_y) //行计数器=512时
valid_r<=1'b0; //像素输入冻结
end
wire valid = valid_r; //连线
assign x_dis=X; //连线X
assign y_dis=Y; //连线Y
// reg[7:0] char_bit;
// always@(posedge CLK_to_DAC)
// if(X==10'd144)char_bit<=9'd240; //当显示到144像素时准备开始输出图像数据
// else if(X>10'd144&&X<10'd384) //左边距屏幕144像素到416像素时 416=144+272(图像宽度)
// char_bit<=char_bit-1'b1; //倒着输出图像信息
reg[29:0] vga_rgb; //定义颜色缓存
always@(posedge CLK_to_DAC) begin
if(X>=0&&X<200)begin //X控制图像的横向显示边界:左边距屏幕左边144像素 右边界距屏幕左边界416像素
vga_rgb<=30'hffffffffff; //白色
end
else if(X>=200&&X<400)begin
vga_rgb<=30'hf00ff65f1f;
end
else if(X>=400&&X<600)begin
vga_rgb<=30'h9563486251;
end
else begin
vga_rgb<=30'h5864928654;
end
end
assign VGA_R=vga_rgb[23:16];
assign VGA_G=vga_rgb[15:8];
assign VGA_B=vga_rgb[7:0];
endmodule
准备一张彩色图片
用电脑自带的画图软件打开我们准备的图片,然后另存为bmp格式
随便在网上下载一个BMP2Mif,直接百度就可以(这里给出我的下载地址,害怕找到盗版的可以使用这个链接BMP2Mif下载地址)
然后直接运行就ok(生成的hex文件在桌面这一点还是有一点不舒服的,但是架不住他方便啊)
PS:这里的bmp大小尽量小一点,比如待会然后进行不下去哈哈哈哈
生成的文件大致是这种就ok
还是quartus,新建一个新的工程,使用的芯片是EP4CE6F17C8,这里过程就不多赘述了
接下来跟流程
这里直接取个名,选择Verilog就行
一直next到一下这一步
这里只要两个个时钟就够了,然后还是next,到一下这一步
接下来弹出的框直接ok就完事,然后检查一下部分,有这个就成功了
new一个Verilog文件,输入内容,这是从ROM取出图片数据
module data_drive (
input wire vga_clk,
input wire rst_n,
input wire [ 11:0 ] addr_h,
input wire [ 11:0 ] addr_v,
output reg [ 15:0 ] rgb_data
);
localparam black = 24'd0;
parameter height = 119; // 图片高度
parameter width = 67; // 图片宽度
reg [ 13:0 ] rom_address ; // ROM地址
wire [ 23:0 ] rom_data ; // 图片数据
wire flag_enable_out2 ; // 图片有效区域
wire flag_clear_rom_address ; // 地址清零
wire flag_begin_h ; // 图片显示行
wire flag_begin_v ; // 图片显示列
always @( posedge vga_clk or negedge rst_n) begin
if(!rst_n)begin
rgb_data = black;
end
else if ( flag_enable_out2 ) begin//图片有效区域将ROM的图片数据传给VGA
rgb_data = rom_data;
end
else begin
rgb_data = black;
end
end
//ROM地址计数器
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
rom_address <= 0;
end
else if ( flag_clear_rom_address ) begin //计数满清零
rom_address <= 0;
end
else if ( flag_enable_out2 ) begin //在有效区域内+1
rom_address <= rom_address + 1;
end
else begin //无效区域保持
rom_address <= rom_address;
end
end
assign flag_clear_rom_address = rom_address == height * width - 1;
assign flag_begin_h = addr_h > ( ( 640 - width ) / 2 ) && addr_h < ( ( 640 - width ) / 2 ) + width + 1;
assign flag_begin_v = addr_v > ( ( 480 - height )/2 ) && addr_v <( ( 480 - height )/2 ) + height + 1;
assign flag_enable_out2 = flag_begin_h && flag_begin_v;
//实例化ROM
rom rom_inst (
.address ( rom_address ),
.clock ( vga_clk ),
.q ( rom_data )
);
endmodule
保存
再new一个Verilog,这是VGA驱动
module vga_display_pic (
input wire clk, //系统时钟
input wire rst_n, //复位
input wire [ 23:0 ] rgb_data, //16位RGB对应值
output wire vga_clk, //vga时钟 25M
output reg h_sync, //行同步信号
output reg v_sync, //场同步信号
output reg [ 11:0 ] addr_h, //行地址
output reg [ 11:0 ] addr_v, //列地址
output wire [ 4:0 ] rgb_r, //红基色
output wire [ 5:0 ] rgb_g, //绿基色
output wire [ 4:0 ] rgb_b //蓝基色
);
// 640 * 480 60HZ
localparam H_FRONT = 16 ; // 行同步前沿信号周期长
localparam H_SYNC = 96 ; // 行同步信号周期长
localparam H_BLACK = 48 ; // 行同步后沿信号周期长
localparam H_ACT = 640 ; // 行显示周期长
localparam V_FRONT = 11 ; // 场同步前沿信号周期长
localparam V_SYNC = 2 ; // 场同步信号周期长
localparam V_BLACK = 31 ; // 场同步后沿信号周期长
localparam V_ACT = 480 ; // 场显示周期长
localparam H_TOTAL = H_FRONT + H_SYNC + H_BLACK + H_ACT; // 行周期
localparam V_TOTAL = V_FRONT + V_SYNC + V_BLACK + V_ACT; // 列周期
reg [ 11:0 ] cnt_h ; // 行计数器
reg [ 11:0 ] cnt_v ; // 场计数器
reg [ 15:0 ] rgb ; // 对应显示颜色值
// 对应计数器开始、结束、计数信号
wire flag_enable_cnt_h ;
wire flag_clear_cnt_h ;
wire flag_enable_cnt_v ;
wire flag_clear_cnt_v ;
wire flag_add_cnt_v ;
wire valid_area ;
// 25M时钟 行周期*场周期*刷新率 = 800 * 525* 60
wire clk_25 ;
// 50M时钟 1040 * 666 * 72
wire clk_50 ;
wire locked ;
//PLL
pll pll_inst (
.areset ( ~rst_n ),
.inclk0 ( clk ),
.c0 ( clk_50 ), //50M
.c1 ( clk_25 ), //25M
.locked ( locked )
);
//根据不同分配率选择不同频率时钟
assign vga_clk = clk_25;
// 行计数
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
cnt_h <= 0;
end
else if ( flag_enable_cnt_h ) begin
if ( flag_clear_cnt_h ) begin
cnt_h <= 0;
end
else begin
cnt_h <= cnt_h + 1;
end
end
else begin
cnt_h <= 0;
end
end
assign flag_enable_cnt_h = 1;
assign flag_clear_cnt_h = cnt_h == H_TOTAL - 1;
// 行同步信号
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
h_sync <= 0;
end
else if ( cnt_h == H_SYNC - 1 ) begin // 同步周期时为1
h_sync <= 1;
end
else if ( flag_clear_cnt_h ) begin // 其余为0
h_sync <= 0;
end
else begin
h_sync <= h_sync;
end
end
// 场计数
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
cnt_v <= 0;
end
else if ( flag_enable_cnt_v ) begin
if ( flag_clear_cnt_v ) begin
cnt_v <= 0;
end
else if ( flag_add_cnt_v ) begin
cnt_v <= cnt_v + 1;
end
else begin
cnt_v <= cnt_v;
end
end
else begin
cnt_v <= 0;
end
end
assign flag_enable_cnt_v = flag_enable_cnt_h;//场计数器开启条件
assign flag_clear_cnt_v = cnt_v == V_TOTAL - 1;//场计数器清空条件,场周期计满
assign flag_add_cnt_v = flag_clear_cnt_h;//场计数增加条件,行计数器清空,一行计满
// 场同步信号
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
v_sync <= 0;
end
else if ( cnt_v == V_SYNC - 1 ) begin
v_sync <= 1;
end
else if ( flag_clear_cnt_v ) begin
v_sync <= 0;
end
else begin
v_sync <= v_sync;
end
end
// 对应有效区域行地址 1-640
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
addr_h <= 0;
end
else if ( valid_area ) begin
addr_h <= cnt_h - H_SYNC - H_BLACK + 1;
end
else begin
addr_h <= 0;
end
end
// 对应有效区域列地址 1-480
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
addr_v <= 0;
end
else if ( valid_area ) begin
addr_v <= cnt_v -V_SYNC - V_BLACK + 1;
end
else begin
addr_v <= 0;
end
end
// 有效显示区域
assign valid_area = cnt_h >= H_SYNC + H_BLACK && cnt_h <= H_SYNC + H_BLACK + H_ACT && cnt_v >= V_SYNC + V_BLACK && cnt_v <= V_SYNC + V_BLACK + V_ACT;
// 显示颜色
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
rgb <= 24'h0;
end
else if ( valid_area ) begin
rgb <= rgb_data;
end
else begin
rgb <= 24'b0;
end
end
assign rgb_r = rgb[ 15:11 ];
assign rgb_g = rgb[ 10:5 ];
assign rgb_b = rgb[ 4:0 ];
endmodule
保存,接下来是顶层模块
module vga_top (
input wire clk,
input wire rst_n,
output wire vga_clk,
output wire h_sync,
output wire v_sync,
output wire [ 4:0 ] rgb_r,
output wire [ 5:0 ] rgb_g,
output wire [ 4:0 ] rgb_b
);
wire [ 11:0 ] addr_h ;
wire [ 11:0 ] addr_v ;
wire [ 15:0 ] rgb_data ;
//模块例化
vga_display_pic (
.clk (clk ),
.rst_n (rst_n ),
.rgb_data (rgb_data ),
.vga_clk (vga_clk ),
.h_sync (h_sync ),
.v_sync (v_sync ),
.addr_h (addr_h ),
.addr_v (addr_v ),
.rgb_r (rgb_r ),
.rgb_g (rgb_g ),
.rgb_b (rgb_b )
);
//数据模块
data_drive u_data_drive(
.vga_clk ( vga_clk ),
.rst_n ( rst_n ),
.addr_h ( addr_h ),
.addr_v ( addr_v ),
.rgb_data ( rgb_data )
);
endmodule
把vga_top置顶,编译,然后就可以去烧录板子实践了
很遗憾,这部分的烧录失败了,原因现在还没有研究明白就没有展示了,成功的实例应该是在显示屏上显示一张比较小的图片就行。
这次实验还是很有意思的,只是没有成功把图片烧录到芯片,感觉很可惜。另外前两个实验(字符和颜色条)都需要配置一些引脚下载的引脚比较麻烦,精力和实力决定了我写不出来,只能下载他人的,也怪不好意思的。下次再试试有没有别的方法吧,等待下一次交流
【FPGA实验】基于DE2-115平台的VGA显示
FPGA驱动VGA显示
Quartus基本IP核调用及仿真