- “深入浅出”系列之杂谈篇:(3)Qt5和Qt6该学哪个?
我真不会起名字啊
qt开发语言
建议qt5且版本为qt5.14.2(百度搜qtarchieve获取),更高版本的坚决不碰。建议这个版本的核心原因是之后的qt版本全部没有离线安装包,只有在线安装器,这个在线安装器经常会偷偷改掉你可以安装的qt版本以及该版本内部可安装的模块,比如(做个假设)你今天装了qt6.2.1然后安装时少安了几个模块,过一段时间你突然需要想安装,会发线在线安装器找不到这个版本了于是你只能把这个版本卸载了装更高的
- Java中DDD概念之四理解仓储模式:领域与数据层的优雅桥梁
以恒1
java开发语言
Java,DDD概念之四理解仓储模式:领域与数据层的优雅桥梁一、仓储模式是什么?仓储(Repository)就像一个智能的业务数据管家。想象你经营一家图书馆,书籍的存放、检索、上架工作交给专业管理员,你只需告诉管理员:“我需要2023年出版的所有编程书籍”。仓储就是这样的管理员,把繁琐的数据操作封装起来,让业务代码专注处理核心逻辑。二、为什么需要仓储模式?1.传统开发的问题假设有一个用户管理系统:
- 国内外AI搜索产品盘点
Suee2020
人工智能
序号AISearch产品名简介网站开发者1Perplexity强大的对话式AI搜索引擎https://www.perplexity.aiPerplexity2GensparkAIAgent搜索引擎https://www.genspark.aiMainFunc(景鲲、朱凯华)3Kimi.ai智能助手https://kimi.moonshot.cn/月之暗面(杨植麟)4秘塔AI搜索AI搜索引擎http
- 芯谷78M05:三端正电压调节器的稳定之选
青牛科技实业01
芯谷单片机嵌入式硬件散热风扇智能家居科技音频限幅便携式音频
在电子电路设计中,稳定的电源供应是确保系统正常运行的关键因素之一。78M05作为一款经典的三端正电压调节器,以其简单、可靠和高效的特性,成为了众多工程师在5V电源设计中的首选。本文将深入探讨芯谷78M05的特性、电气参数、典型应用电路以及使用注意事项,帮助读者全面了解这一经典芯片。一、产品概述芯谷78M05是一款三端正电压调节器,属于78MXX系列固定电压调节器集成电路的一员。该芯片能够提供稳定的
- WebRTC的ICE之STUN协议
chen_song_
WebRTC源码探秘webrtc音视频
WebRTC的ICE之STUN协议WebRTC的ICE之STUN协议WebRTC的ICE之STUN协议前言一、STUN协议二、STUN协议头格式三、STUNHeader四、STUNMessageType1、C0C12、STUN信息类型3、大小端模式五、StunMagicCookie六、TransactionID事务ID七、STUNMessageBody八、RFC3489定义的属性九、WebRTC中
- JAVA从万级QPS到亿级吞吐,如何用非阻塞模型突破传统架构的性能瓶颈
王大师王文峰
java架构开发语言
本人详解作者:王文峰,参加过CSDN2020年度博客之星,《Java王大师王天师》公众号:JAVA开发王大师,专注于天道酬勤的Java开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯山峯转载说明:务必注明来源(注明:作者:王文峰哦)JAVA从万级QPS到亿级吞吐,如何用非阻塞模型突破传统架构的性能瓶颈学习教程(传送门)引言:当线程池成为瓶颈——某视频平台春节
- WebRTC中音视频服务质量QoS之RTT衡量网络往返时延的加权平均RTT计算机制详解
chen_song_
WebRTC源码探秘webrtc音视频网络
WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解前言一、RTT网络往返时延的原理1、基于发送端(SR/RR模式)①.基本定义②.计算RTT网络往返时延的原理③发送Sender
- Android Framework 之了解系统启动流程二
Bonnie_cat
android
AndroidFramework源码阅读系列篇章有:系统启动流程一之init进程和zygote进程启动分析系统启动流程二之SystemServer进程启动分析1.SystemServer进程启动分析在系统启动流程一之init进程和zygote进程启动分析中分析zygote进程时,我们知道了zygote调用forkSystemServer()方法fork了SystemServer进程。看一下fork
- metasploit内网篇之域控内信息收集(十一)
暴躁的小胡!!!
内网渗透安全web安全网络
常用信息收集模块auxiliary/scanner/discovery/arp_sweep#基于arp协议发现内网存活主机,这不能通过代理使用auxiliary/scanner/portscan/ack#基于tcp的ack回复进行端口扫描,默认扫描1-10000端口auxiliary/scanner/portscan/tcp#基于tcp进行端口扫描,默认扫描1-10000端口auxiliary/s
- 软件测试之使用Requests库进行接口测试
头疼的程序员
软件测试测试工具
文章目录前言Requests库是什么为什么要用Requests库进行接口测试安装Requests库Requests库使用发送GET请求发送带查询参数的GET请求响应内容格式添加请求头信息发送一个POST请求查看响应内容断言请求超时Cookie与Session模拟登录参考目录前言阅读本文前请注意最后编辑时间,文章内容可能与目前最新的技术发展情况相去甚远。欢迎各位评论与私信,指出错误或是进行交流等。本
- Web三要素:CSS之Flex/Grid布局(4)
双囍菜菜
前端随记前端css
CSS布局革命:Flex与Grid的双子星战法文章目录CSS布局革命:Flex与Grid的双子星战法一、布局进化史:从洪荒时代到现代文明二、Flex布局:一维空间的舞蹈家2.1核心概念深度解析容器属性详解:2.2典型应用场景实战导航栏布局(React示例)垂直居中(Vue示例)三、Grid布局:二维空间的指挥官3.1网格系统深度解析核心概念图解:3.2高级布局技巧实战响应式网格(React示例)复
- UI自动化测试之CSS Selector 定位秘籍:解锁 WEB UI 自动化测试的高效之道
做测试的小薄
测试进阶cssseleniumUI自动化测试元素定位方式
在WebUI自动化测试中,元素定位是实现自动化操作的核心步骤。SeleniumWebDriver提供了多种元素定位方式,其中CSSSelector是一种功能强大且灵活的定位方法。它基于CSS选择器语法,能够快速、精准地定位目标元素,尤其适用于复杂的DOM结构。本文将深入解析CSSSelector的工作原理、使用技巧以及需要注意的事项,帮助你在自动化测试中更高效地运用这一工具。一、CSSSelect
- 通信之PDH准同步数字系列
玖Yee
信息与通信
PDH-准同步数字系列(PlesiochronousDigitalHierarchy):是数字通信系统中的一种数字传输系列,采用在数字通信网的每个节点上都分别设置高精度时钟的方式,这些时钟信号有统一标准速率,但各时钟间存在微小差别,并非真正的同步,所以叫“准同步”。速率等级两大体系三个标准:国际上PDH有两大系列三个标准。以欧洲系列为例,各次群容纳的E1数量呈4倍关系,比如可将4个2Mbit/s复
- 架构模式之黑板模式
weixin_30518397
c/c++游戏数据库
一、定义黑板模式是一种常用的架构模式,应用中的多种不同数据处理逻辑相互影响和协同来完成数据分析处理。黑板模式允许多个消息读写者同时存在,消息的生产者和消费者完全分开。这就像一个黑板,任何一个教授(消息的生产者)都可以在其上书写消息,任何一个学生(消息的消费者)都可以从黑板上读取消息,两者在空间和时间上可以解耦,并且互不干扰。这种模式对于没有确定解决方案策略的问题是有用的。二、模式组成黑板模式由3个
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 第20篇:从零开始构建NLP项目之电商用户评论分析:模型训练阶段
Gemini技术窝
自然语言处理人工智能深度学习AIGC机器学习nlplangchain
大家好,今天我们继续探讨如何从零开始构建一个NLP项目,特别是电商用户评论分析中的模型训练阶段。模型训练是NLP项目的核心环节,通过合理的调参和优化,可以显著提升模型性能。本文将详细介绍模型训练的步骤,并展示如何使用LangChain库进行模型训练、调参和优化。文章目录项目的背景和目标模型训练的详细步骤安装依赖包流程图1.准备数据2.定义模型3.训练模型4.评估模型5.调参与优化常见错误和注意事项
- 《架构300讲》学习笔记(201-250)
newProxyInstance
笔记架构
前言内容来自B站IT老齐架构300讲内容。201小心selectforupdate,有效规避索引选择性锁表202设计模式之建造者模式的用途20320分钟上手ELK日志监控系统分类:【ELK】204设计模式之门面模式Facade205设计模式之适配器模式Adapter206经典设计!如何让RabbitMQ支持消息延迟投递207Docker容器基于NFS实现跨容器文件共享208数据向上追溯场景该如何优
- Qt之动画编程之窗体透明度效果
我不是程序员~~~~
Qt实战qtandroid开发语言
#ifndefOPACITY_WIDGET_H#defineOPACITY_WIDGET_H#include#includeclassopacity_widget:publicQWidget{Q_OBJECTQ_PROPERTY(qrealopacityREADwindowOpacityWRITEsetWindowOpacity)public:opacity_widget(QWidget*pare
- 数据结构--栈详解
梓色系
暑期打卡数据结构数据结构java开发语言
前言大家好呀,今天我们学习数据结构之栈篇,这是一种很简单的数据结构,今天我们将从概念,用法和模拟实现三个面开始学习一,概念和性质栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(LastInFirstOut)的原则。压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。出栈:栈的删除操作叫做出
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- 软件测试之测试用例详细解读
隐居人家的炊烟
测试用例软件测试自动化测试
一、通用测试用例八要素1、用例编号;2、测试项目;3、测试标题;4、重要级别;5、预置条件;6、测试输入;7、操作步骤;8、预期输出二、具体分析通用测试用例八要素1、用例编号一般是数字和字符组合成的字符串,可以包括(下划线、单词缩写、数字等等),但是需要注意的是,尽量不要写汉语拼音,因为拼音的意义可能有好几种,有可能会导致乱码;用例编号具有唯一性和易识别性。(比如说我们唯一标识一个人:中国-上海市
- java set遍历删除元素_Java 集合(List、Set)遍历、判断、删除元素时的小陷阱
疯狂的Java说书酱
javaset遍历删除元素
开发中,常有场景:遍历集合,依次判断是否符合条件,如符合条件则删除当前元素。不知不觉中,有些陷阱,不知你有没有犯。1.一、漏网之鱼-for循环递增下标方式遍历集合,并删除元素如果你用for循环递增下标方式遍历集合,在遍历过程中删除元素,你可能会遗漏了某些元素。说那么说可能也说不清楚,看以下示例:importjava.util.ArrayList;importjava.util.List;publi
- 物联网设备数据流转之搭建环境:开源高性能分布式支持SQL的时序数据库TDengine
Heartsuit
时序数据库物联网分布式TDengine涛思数据
背景我们的项目涉及物联网相关业务,由于一开始的年少无知,传感器数据采用了MySQL进行存储,经过近两年的数据累积,目前几个核心表,单表数据已过亿,虽然通过索引优化、SQL优化以及读写分离等措施,勉强满足基本的查询,能在秒级给出数据;但是一方面当前MySQL数据表索引的大小甚至超过了数据大小,这样下去肯定不行;另一方面来自于前端感知设备的数据量还在持续增加,当面对用户多维度的统计需求,在实现上、效率
- [YOLO专题-22]:YOLO V5 - ultralytics代码解析-超参数详解
文火冰糖的硅基工坊
人工智能-YOLO专题目标检测计算机视觉深度学习YOLO超参数
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/122372614目录前言:第1章超参数配置文件的基本信息1.1超参数配置文件的路径路径1.2超参数配置文件1.3如何指定超参数配置文件第2章超参数内容详解前言:YOLOV5除了通过用户命令行参数
- HarmonyOS开发之组件通信
张帅涛_666
HarmonyOS开发harmonyos深度学习
文章目录一、使用@State和@Prop(单向绑定)二、使用@State和@Link(双向绑定)三、@Provide装饰器和@Consume装饰器(跨层级通信)一、使用@State和@Prop(单向绑定)@Prop装饰器:父子单向同步限制条件@Prop装饰器不能在@Entry装饰的自定义组件中使用@Prop变量允许在本地修改,但修改后的变化不会同步回父组件当父组件中数据改变时,与之相关的@Prop
- LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于源词表的扩展、(init_model.py文件)实现过计算均值扩展模型、(prepare_pretr
一个处女座的程序猿
CaseCodeNLP/LLMs精选(人工智能)-中级ColossalLLaMA-2自然语言处理
LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于jsonl文件中读取新词列表(新中文词汇)→for循环去重实现词表的扩展(中文标记的新词汇)→保存新的分词模型、(init_model.py文件)实现过计算均值来扩展模型的嵌入层以适应新的词汇表,然后保存扩展后的模型、(prepare_pretrain_dataset.py文件)将原始数据集进行处理
- LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插
一个处女座的程序猿
NLP/LLMs精选(人工智能)-中级Colossal-AILLaMA-2大语言模型自然语言处理
LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插件)→数据预处理(初始化分词器+数据处理器+数据加载器)→模型训练(初始化模型/优化器/学习率调度器/梯度检查点/Flash-Attention/设置数据类型/是否加载预训练模型/从上一次训练点继续训
- 【守望绿色田园】揭秘基本农田保护的“五不准”制度
GeoSaaS
自然资源人工智能gis3d大数据数据库
在这个快速发展与变革的时代,守护脚下的每一寸耕地,保障国家粮食安全显得尤为重要。今天,就让我们一起深入了解一个至关重要的农业政策——“基本农田保护实行‘五不准’制度”。这不仅是农民朋友需要了解的法律常识,也是每位关心中国粮食安全与可持续发展人士的必修课。前言:基本农田,国之命脉基本农田,是指按照一定时期人口和社会经济发展对农产品的需求,依据土地利用总体规划确定不得占用的耕地。它是确保国家粮食安全的
- flutter 专题三十七 Flutter混合开发之FlutterFragment
leluckys
Flutter面试与实战fluttergitee
我们知道,原生Android集成Flutter主要有两种方式,一种是创建fluttermodule,然后以原生module那样依赖;另一种方式是将fluttermodule打包成aar,然后在原生工程中依赖aar包,官方推荐aar的方式接入。如何在原生Android工程中以aar的方式接入Flutter,大家可以参考我之前文章的介绍:原生Android工程接入Flutteraar。今天想给大家分享
- JavaEE基础八之EL与JSTL相关知识(过时不谈)
ZHWVICDI
JavaEEJavaEEEL表达式JSTL
EL功能动态输出内容替代JSP中的表达式元素简化jsp主要就是取值一般格式${EL表达式}内置对象牢记!!因为其他也是差不多param/paramValues方便输出请求参数pageScope/requestScopre/sessionScope/applicationScope输出各范围的属性header/headerValues与请求头相关cookie/initParampageContext
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号