概述
dispatch_group
可以将GCD的任务合并到一个组里来管理,也可以同时监听组里所有任务的执行情况。主要的API有以下几个,先看一下Dispatch Group
的具体使用。
dispatch_group_create
dispatch_group_enter
dispatch_group_leave
dispatch_group_wait
dispatch_group_notify
dispatch_group_async
使用篇
dispatch_group
最多的用法便是用dispatch_group_enter
和dispatch_group_leave
实现一组任务完成的监控或回调,见代码示例:
- (void)batchRequestConfig {
dispatch_group_t group = dispatch_group_create();
NSArray *list = @[@"1",@"2",@"3"];
[list enumerateObjectsUsingBlock:^(id _Nonnull obj, NSUInteger idx, BOOL * _Nonnull stop) {
//标记开始本次请求
dispatch_group_enter(group);
[self fetchConfigurationWithCompletion:^(NSDictionary *dict) {
//标记本次请求完成
dispatch_group_leave(group);
}];
}];
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
//所有请求都完成了,执行刷新UI等操作
});
}
- (void)fetchConfigurationWithCompletion:(void(^)(NSDictionary *dict))completion {
//AFNetworking或其他网络请求库
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
//模拟网络请求
sleep(2);
!completion ? nil : completion(nil);
});
}
dispatch_group
有两个需要注意的地方:
1、dispatch_group_enter
必须在dispatch_group_leave
之前出现
2、dispatch_group_enter
和dispatch_group_leave
必须成对出现
这里先抛出一个问题让大家思考一下:如果dispatch_group_enter
和dispatch_group_leave
不成对出现会出现什么结果?具体的结论会在下面的原理篇和结论篇说明。
原理篇
dispatch_group_create
Dispatch Group
的本质是一个初始value为LONG_MAX
的semaphore
,通过信号量来实现一组任务的管理,代码如下:
dispatch_group_t dispatch_group_create(void) {
//申请内存空间
dispatch_group_t dg = (dispatch_group_t)_dispatch_alloc(
DISPATCH_VTABLE(group), sizeof(struct dispatch_semaphore_s));
//使用LONG_MAX初始化信号量结构体
_dispatch_semaphore_init(LONG_MAX, dg);
return dg;
}
dispatch_group_enter
void dispatch_group_enter(dispatch_group_t dg) {
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
long value = dispatch_atomic_dec2o(dsema, dsema_value, acquire);
if (slowpath(value < 0)) {
DISPATCH_CLIENT_CRASH(
"Too many nested calls to dispatch_group_enter()");
}
}
dispatch_group_enter
的逻辑是将dispatch_group_t
转换成dispatch_semaphore_t
后将dsema_value
的值减一。
dispatch_group_leave
void dispatch_group_leave(dispatch_group_t dg) {
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
long value = dispatch_atomic_inc2o(dsema, dsema_value, release);
if (slowpath(value < 0)) {
DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()");
}
if (slowpath(value == LONG_MAX)) {
(void)_dispatch_group_wake(dsema);
}
}
dispatch_group_leave
的逻辑是将dispatch_group_t
转换成dispatch_semaphore_t
后将dsema_value
的值加一。
当value等于LONG_MAX时表示所有任务已完成,调用_dispatch_group_wake
唤醒group,因此dispatch_group_leave
与dispatch_group_enter
需成对出现。
当调用了dispatch_group_enter
而没有调用dispatch_group_leave
时,会造成value值不等于LONG_MAX而不会走到唤醒逻辑,dispatch_group_notify
函数的block无法执行或者dispatch_group_wait
收不到semaphore_signal
信号而卡住线程。
当dispatch_group_leave
比dispatch_group_enter
多调用了一次时,dispatch_semaphore_t的value会等于LONGMAX+1(2147483647+1),即long的负数最小值LONG_MIN(–2147483648)。因为此时value小于0,所以会出现”Unbalanced call to dispatch_group_leave()”的崩溃,这是一个特别需要注意的地方。
dispatch_group_wait
long dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout) {
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
if (dsema->dsema_value == LONG_MAX) {
return 0;
}
if (timeout == 0) {
return KERN_OPERATION_TIMED_OUT;
}
return _dispatch_group_wait_slow(dsema, timeout);
}
如果当前value的值为初始值,表示任务都已经完成,直接返回0,如果timeout为0的话返回超时。其余情况会调用_dispatch_group_wait_slow
方法。
static long _dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout) {
long orig;
mach_timespec_t _timeout;
kern_return_t kr;
again:
if (dsema->dsema_value == LONG_MAX) {
return _dispatch_group_wake(dsema);
}
(void)dispatch_atomic_inc2o(dsema, dsema_group_waiters, relaxed);
if (dsema->dsema_value == LONG_MAX) {
return _dispatch_group_wake(dsema);
}
_dispatch_semaphore_create_port(&dsema->dsema_port);
switch (timeout) {
default:
do {
uint64_t nsec = _dispatch_timeout(timeout);
_timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC);
_timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC);
kr = slowpath(semaphore_timedwait(dsema->dsema_port, _timeout));
} while (kr == KERN_ABORTED);
if (kr != KERN_OPERATION_TIMED_OUT) {
DISPATCH_SEMAPHORE_VERIFY_KR(kr);
break;
}
case DISPATCH_TIME_NOW:
orig = dsema->dsema_group_waiters;
while (orig) {
if (dispatch_atomic_cmpxchgvw2o(dsema, dsema_group_waiters, orig,
orig - 1, &orig, relaxed)) {
return KERN_OPERATION_TIMED_OUT;
}
}
case DISPATCH_TIME_FOREVER:
do {
kr = semaphore_wait(dsema->dsema_port);
} while (kr == KERN_ABORTED);
DISPATCH_SEMAPHORE_VERIFY_KR(kr);
break;
}
goto again;
}
可以看到跟dispatch_semaphore的_dispatch_semaphore_wait_slow
方法很类似,不同点在于等待完之后调用的again函数会调用_dispatch_group_wake
唤醒当前group。_dispatch_group_wake
的分析见下面的内容。
dispatch_group_notify
void dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db) {
//封装调用dispatch_group_notify_f函数
dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db),
_dispatch_call_block_and_release);
}
//真正的入口函数
void dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
void (*func)(void *)) {
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
//封装结构体
dispatch_continuation_t prev, dsn = _dispatch_continuation_alloc();
dsn->do_vtable = (void *)DISPATCH_OBJ_ASYNC_BIT;
dsn->dc_data = dq;
dsn->dc_ctxt = ctxt;
dsn->dc_func = func;
dsn->do_next = NULL;
_dispatch_retain(dq);
//将结构体放到链表尾部,如果链表为空同时设置链表头部节点并唤醒group
prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn, release);
if (fastpath(prev)) {
prev->do_next = dsn;
} else {
_dispatch_retain(dg);
dispatch_atomic_store2o(dsema, dsema_notify_head, dsn, seq_cst);
dispatch_atomic_barrier(seq_cst); //
if (dispatch_atomic_load2o(dsema, dsema_value, seq_cst) == LONG_MAX) {
_dispatch_group_wake(dsema);
}
}
}
dispatch_group_notify
的具体实现在dispatch_group_notify_f
函数里,逻辑就是将block和queue封装到dispatch_continuation_t
里,并将它加到链表的尾部,如果链表为空同时还会设置链表的头部节点。如果dsema_value的值等于初始值,则调用_dispatch_group_wake
执行唤醒逻辑。
dispatch_group_wake
static long _dispatch_group_wake(dispatch_semaphore_t dsema) {
dispatch_continuation_t next, head, tail = NULL, dc;
long rval;
//将dsema的dsema_notify_head赋值为NULL,同时将之前的内容赋给head
head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL, relaxed);
if (head) {
//将dsema的dsema_notify_tail赋值为NULL,同时将之前的内容赋给tail
tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL, relaxed);
}
rval = (long)dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0, relaxed);
if (rval) {
// wake group waiters
_dispatch_semaphore_create_port(&dsema->dsema_port);
do {
kern_return_t kr = semaphore_signal(dsema->dsema_port);
DISPATCH_SEMAPHORE_VERIFY_KR(kr);
} while (--rval);
}
if (head) {
// async group notify blocks
do {
next = fastpath(head->do_next);
if (!next && head != tail) {
while (!(next = fastpath(head->do_next))) {
dispatch_hardware_pause();
}
}
dispatch_queue_t dsn_queue = (dispatch_queue_t)head->dc_data;
dc = _dispatch_continuation_free_cacheonly(head);
//执行dispatch_group_notify的block,见dispatch_queue的分析
dispatch_async_f(dsn_queue, head->dc_ctxt, head->dc_func);
_dispatch_release(dsn_queue);
if (slowpath(dc)) {
_dispatch_continuation_free_to_cache_limit(dc);
}
} while ((head = next));
_dispatch_release(dsema);
}
return 0;
}
dispatch_group_wake
首先会循环调用semaphore_signal
唤醒等待group的信号量,使dispatch_group_wait
函数中等待的线程得以唤醒;然后依次获取链表中的元素并调用dispatch_async_f
异步执行dispatch_group_notify
函数中注册的回调,使得notify中的block得以执行。
dispatch_group_async
dispatch_group_async
的原理和dispatch_async
比较类似,区别点在于group操作会带上DISPATCH_OBJ_GROUP_BIT标志位。添加group任务时会先执行dispatch_group_enter
,然后在任务执行时会对带有该标记的执行dispatch_group_leave
操作。下面看下具体实现:
void dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db) {
//封装调用dispatch_group_async_f函数
dispatch_group_async_f(dg, dq, _dispatch_Block_copy(db),
_dispatch_call_block_and_release);
}
void dispatch_group_async_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
dispatch_function_t func) {
dispatch_continuation_t dc;
_dispatch_retain(dg);
//先调用dispatch_group_enter操作
dispatch_group_enter(dg);
dc = _dispatch_continuation_alloc();
//DISPATCH_OBJ_GROUP_BIT会在_dispatch_continuation_pop方法中用来判断是否为group,如果为group会执行dispatch_group_leave
dc->do_vtable = (void *)(DISPATCH_OBJ_ASYNC_BIT | DISPATCH_OBJ_GROUP_BIT);
dc->dc_func = func;
dc->dc_ctxt = ctxt;
dc->dc_data = dg;
if (dq->dq_width != 1 && dq->do_targetq) {
return _dispatch_async_f2(dq, dc);
}
_dispatch_queue_push(dq, dc);
}
dispatch_group_async_f
与dispatch_async_f
代码类似,主要执行了以下操作:
1、调用dispatch_group_enter
2、将block和queue等信息记录到dispatch_continuation_t
中,并将它加入到group的链表中。
3、_dispatch_continuation_pop
执行时会判断任务是否为group,是的话执行完任务再调用dispatch_group_leave以达到信号量value的平衡。
_dispatch_continuation_pop
简化后的代码如下:
static inline void _dispatch_continuation_pop(dispatch_object_t dou) {
dispatch_continuation_t dc = dou._dc, dc1;
dispatch_group_t dg;
_dispatch_trace_continuation_pop(_dispatch_queue_get_current(), dou);
//判断是否为队列,是的话执行队列的invoke函数
if (DISPATCH_OBJ_IS_VTABLE(dou._do)) {
return dx_invoke(dou._do);
}
//dispatch_continuation_t结构体,执行具体任务
if ((long)dc->do_vtable & DISPATCH_OBJ_GROUP_BIT) {
dg = dc->dc_data;
} else {
dg = NULL;
}
_dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
if (dg) {
//这是group操作,执行leave操作对应最初的enter
dispatch_group_leave(dg);
_dispatch_release(dg);
}
}
总结篇
dispatch_group
本质是个初始值为LONG_MAX的信号量,等待group中的任务完成其实是等待value恢复初始值。
dispatch_group_enter
和dispatch_group_leave
必须成对出现。
如果dispatch_group_enter
比dispatch_group_leave
多一次,则wait函数等待的
线程不会被唤醒和注册notify的回调block不会执行;
如果dispatch_group_leave
比dispatch_group_enter
多一次,则会引起崩溃。