二叉树的基本算法
树、二叉树 的基本概念,参考数据结构算法之美-23讲二叉树基础(上):树、二叉树
二叉树的遍历
如何将所有节点都遍历打印出来呢?经典的方法有三种,前序遍历、中序遍历和后序遍历。其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。
- 前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
- 中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。
- 后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身
private static class Node {
E element;
Node left;
Node right;
Node parent;
public Node(E element, Node parent) {
this.element = element;
this.parent = parent;
}
public boolean isLeaf() {
return left == null && right == null;
}
public boolean hasTwoChildren() {
return left != null && right != null;
}
}
/**
* 前序遍历
*/
public void preorderTraversal() {
preorderTraversal(root);
}
private void preorderTraversal(Node node) {
if (node == null) return;
System.out.println(node.element);
preorderTraversal(node.left);
preorderTraversal(node.right);
}
/**
* 中序遍历
*/
public void inorderTraversal() {
inorderTraversal(root);
}
private void inorderTraversal(Node node) {
if (node == null) return;
inorderTraversal(node.left);
System.out.println(node.element);
inorderTraversal(node.right);
}
/**
* 后序遍历
*/
public void postorderTraversal() {
postorderTraversal(root);
}
private void postorderTraversal(Node node) {
if (node == null) return;
postorderTraversal(node.left);
postorderTraversal(node.right);
System.out.println(node.element);
}
二叉树的递归序
public static void f(Node head) {
if (head == null) {
return;
}
// 1 System.out.println(node.element);
f(head.left);
// 2 System.out.println(node.element);
f(head.right);
// 3 System.out.println(node.element);
}
递归需遍历 在上述代码1,2,3的位置都会打印一次,每个数字都会出现三次,如下图所示
先序遍历:第一次出现的打印出来
1 2 4 5 3 6 7
中序遍历:数字第二次出现,打印出来
4 2 5 1 6 3 7
后序遍历 :数组第三次出现打印出来
4 5 2 6 7 3 1
非递归方式实现二叉树的先序、中序、后序遍历
- 任何递归函数都可以改成非递归
- 自己设计压栈的来实现
public class UnRecursiveTraversalBT {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int v) {
value = v;
}
}
public static void pre(Node head) {
System.out.print("pre-order: ");
if (head != null) {
Stack stack = new Stack();
stack.add(head);
while (!stack.isEmpty()) {
head = stack.pop();
System.out.print(head.value + " ");
if (head.right != null) {
stack.push(head.right);
}
if (head.left != null) {
stack.push(head.left);
}
}
}
System.out.println();
}
public static void in(Node cur) {
System.out.print("in-order: ");
if (cur != null) {
Stack stack = new Stack();
while (!stack.isEmpty() || cur != null) {
if (cur != null) {
stack.push(cur);
cur = cur.left;
} else {
cur = stack.pop();
System.out.print(cur.value + " ");
cur = cur.right;
}
}
}
System.out.println();
}
public static void pos1(Node head) {
System.out.print("pos-order: ");
if (head != null) {
Stack s1 = new Stack();
Stack s2 = new Stack();
s1.push(head);
while (!s1.isEmpty()) {
head = s1.pop(); // 头 右 左
s2.push(head);
if (head.left != null) {
s1.push(head.left);
}
if (head.right != null) {
s1.push(head.right);
}
}
// 左 右 头
while (!s2.isEmpty()) {
System.out.print(s2.pop().value + " ");
}
}
System.out.println();
}
public static void pos2(Node h) {
System.out.print("pos-order: ");
if (h != null) {
Stack stack = new Stack();
stack.push(h);
Node c = null;
while (!stack.isEmpty()) {
c = stack.peek();
if (c.left != null && h != c.left && h != c.right) {
stack.push(c.left);
} else if (c.right != null && h != c.right) {
stack.push(c.right);
} else {
System.out.print(stack.pop().value + " ");
h = c;
}
}
}
System.out.println();
}
public static void main(String[] args) {
Node head = new Node(1);
head.left = new Node(2);
head.right = new Node(3);
head.left.left = new Node(4);
head.left.right = new Node(5);
head.right.left = new Node(6);
head.right.right = new Node(7);
pre(head);
System.out.println("========");
in(head);
System.out.println("========");
pos1(head);
System.out.println("========");
pos2(head);
System.out.println("========");
}
}
RUN>
pre-order: 1 2 4 5 3 6 7 ======== in-order: 4 2 5 1 6 3 7 ======== pos-order: 4 5 2 6 7 3 1 ======== pos-order: 4 5 2 6 7 3 1 ========
- 先序遍历:
public static void pre(Node head) {
System.out.print("pre-order: ");
if (head != null) {
Stack stack = new Stack();
stack.add(head);
while (!stack.isEmpty()) {
head = stack.pop();
System.out.print(head.value + " ");
if (head.right != null) {//先push右
stack.push(head.right);
}
if (head.left != null) {//再push左
stack.push(head.left);
}
}
}
System.out.println();
}
- 后序遍历
public static void pos1(Node head) {
System.out.print("pos-order: ");
if (head != null) {
Stack s1 = new Stack();
Stack s2 = new Stack();
s1.push(head);
while (!s1.isEmpty()) {
head = s1.pop(); // 头 右 左
s2.push(head);//辅助逆序
if (head.left != null) {//先push左
s1.push(head.left);
}
if (head.right != null) {//再push右
s1.push(head.right);
}
}
// 左 右 头
while (!s2.isEmpty()) {
System.out.print(s2.pop().value + " ");
}
}
System.out.println();
}
4 5 2 6 7 3 1
中序遍历
public static void in(Node cur) {
System.out.print("in-order: ");
if (cur != null) {
Stack stack = new Stack();
while (!stack.isEmpty() || cur != null) {
if (cur != null) {//cur 不为null push
stack.push(cur);
cur = cur.left;
} else {//遇到NULL pop cur = cur.right;
cur = stack.pop();
System.out.print(cur.value + " ");
cur = cur.right;
}
}
}
System.out.println();
}
二叉树的按层遍历(宽度优先遍历)
- 其实就是宽度优先遍历,用队列
public class LevelTraversalBT {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int v) {
value = v;
}
}
public static void level(Node head) {
if (head == null) {
return;
}
Queue queue = new LinkedList<>();
queue.add(head);
while (!queue.isEmpty()) {
Node cur = queue.poll();
System.out.println(cur.value);
if (cur.left != null) {
queue.offer(cur.left);
}
if (cur.right != null) {
queue.offer(cur.right);
}
}
}
}
二叉树求树的宽度
- 可以通过设置flag变量的方式,来发现某一层的结束
public static int maxWidthUseMap(Node head) {
if (head == null) {
return 0;
}
Queue queue = new LinkedList<>();
queue.add(head);
// key 在 哪一层,value
HashMap levelMap = new HashMap<>();
levelMap.put(head, 1);
int curLevel = 1; // 当前你正在统计哪一层的宽度
int curLevelNodes = 0; // 当前层curLevel层,宽度目前是多少
int max = 0;
while (!queue.isEmpty()) {
Node cur = queue.poll();
int curNodeLevel = levelMap.get(cur);
if (cur.left != null) {
levelMap.put(cur.left, curNodeLevel + 1);//如队列的时候,记录好结点的层次
queue.add(cur.left);
}
if (cur.right != null) {
levelMap.put(cur.right, curNodeLevel + 1);//如队列的时候,记录好结点的层次
queue.add(cur.right);
}
if (curNodeLevel == curLevel) {
curLevelNodes++;
} else {
max = Math.max(max, curLevelNodes);
curLevel++;
curLevelNodes = 1;
}
}
max = Math.max(max, curLevelNodes);//最后一次加入一次比较
return max;
}
不使用HashMap的方法
public static int maxWidthNoMap(Node head) {
if (head == null) {
return 0;
}
Queue queue = new LinkedList<>();
queue.add(head);
Node curEnd = head; // 当前层,最右节点是谁
Node nextEnd = null; // 下一层,最右节点是谁
int max = 0;
int curLevelNodes = 0; // 当前层的节点数
while (!queue.isEmpty()) {
Node cur = queue.poll();
if (cur.left != null) {
queue.add(cur.left);
nextEnd = cur.left;
}
if (cur.right != null) {
queue.add(cur.right);
nextEnd = cur.right;
}
curLevelNodes++;
if (cur == curEnd) {
max = Math.max(max, curLevelNodes);
curLevelNodes = 0;
curEnd = nextEnd;
}
}
return max;
}
前驱节点(predecessor)
private Node predecessor(Node node) {
if (node == null) return null;
// 前驱节点在左子树当中(left.right.right.right....)
Node p = node.left;
if (p != null) {
while (p.right != null) {
p = p.right;
}
return p;
}
// 从父节点、祖父节点中寻找前驱节点
//终止条件:node在parent的右字数中
while (node.parent != null && node == node.parent.left) {
node = node.parent;
}
// node.parent == null
// node == node.parent.right
return node.parent;
}
后继节点(successor)
private Node successor(Node node) {
if (node == null) return null;
// 前驱节点在左子树当中(right.left.left.left....)
Node p = node.right;
if (p != null) {
while (p.left != null) {
p = p.left;
}
return p;
}
// 从父节点、祖父节点中寻找前驱节点
while (node.parent != null && node == node.parent.right) {
node = node.parent;
}
return node.parent;
}