- 设计模式GOF23简介
令狐掌门
C++/C#设计模式设计模式
软件设计模式介绍公元1991年,软件界有四位大侠,总结了前人的一些设计模式,并进行分门别类,一共得出23种设计模式供软件开发者进行参考复用,在经过几代人的开发实践后,设计模式在各个项目中大放光彩,这四位大侠是Gamma,Helm,JohnsonVlissides,Addison-Wesley,全地球程序员为了表示对设计模式的敬仰与崇拜,因此设计模式又称为GOF23。设计模式分类设计模式主要有三大类
- 深度学习-笔记1
深度学习神经网络
刚开始接触深度学习相关内容,在这儿做一个笔记:网址:https://gitee.com/paddlepaddle/PaddleNLPpaddle-nlp是一个自然语言处理NLP方面的工具包(代码库)ERNIEERNIE是百度基于BERT改进的预训练大模型,结合了Transformer架构和知识增强机制。整体上可以分为预训练模型层和任务适配层,预训练模型层负责学习通用的语言知识和语义表示,任务适配层
- 深度学习之核函数
fpcc
AI及算法ai
深度学习之核函数在机器学习中,常看到多项式核函数、高斯核函数,那什么叫核函数(KernelFunction,或者KernelTrick)呢?它有什么用呢。支持向量机通过某非线性变换φ(x),将输入空间映射到高维特征空间。特征空间的维数可能非常高。如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数K(x,x′),它恰好等于在高维空间中这个内积,即K(x,x′)=。那么支持向量机就不用
- 深度学习模型在汽车自动驾驶领域的应用
eso1983
深度学习汽车自动驾驶
汽车自动驾驶是一个高度复杂的系统,深度学习和计算技术在其中扮演核心角色。今天简单介绍一下自动驾驶领域常用的深度学习模型及其计算原理的解析。1.深度学习模型分类及应用场景1.1视觉感知模型CNN(卷积神经网络)应用:图像分类、物体检测(车辆、行人、交通标志)、语义分割(道路、车道线)。典型模型:YOLO:实时目标检测,低延迟特性适合自动驾驶。MaskR-CNN:结合检测与像素级分割,用于精确场景理解
- 跨平台物联网漏洞挖掘算法评估框架设计与实现申报书上
XLYcmy
漏洞挖掘网络安全漏洞挖掘物联网项目申报跨架构静态分析固件
本研究的研究目的主要有以下两个:1、基于此领域的相关方法,通过实验找出各个架构的最优方法2、通过设计实验,比较跨架构解决方案和各架构最优方法组合解决方案在函数识别、漏洞挖掘上的优劣性一、项目技术路线(1)构建统一规范全面的多架构物联网设备二进制程序数据集(2)针对跨架构下的二进制程序,利用逆向工具提取为图、抽象语法树等中间语言,对于不同中间语言,选择合适的深度学习方法提取出中间语言数据结构的特征,
- 基于Pyhton的人脸识别(Python 3.12+face_recognition库)
F2022697486
python人工智能开发语言
使用Python进行人脸编码和比较简介在这个教程中,我们将学习如何使用Python和face_recognition库来加载图像、提取人脸编码,并比较两个人脸是否相似。face_recognition库是一个强大的工具,它基于dlib的深度学习模型,可以轻松实现人脸检测和识别功能。本教程适合初学者,我们将通过一个简单的项目来了解这个库的基本用法和环境配置。代码示例importface_recogn
- 自然语言处理-词嵌入 (Word Embeddings)
纠结哥_Shrek
自然语言处理人工智能
词嵌入(WordEmbedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有相近的表示。常见词嵌入方法基于矩阵分解的方法LatentSemanticAnalysis(LSA)LatentDirichletAllocation(LDA)非负矩阵分解(NMF)基于神经网络的方法Word2Vec(Google提
- 计算机网络概述
听风与他
计算机网络网络软件设计师
前言本文主要是【计算机网络概述】——计算机网络概述的文章,如果有什么需要改进的地方还请大佬指出⛺️作者简介:大家好,我是听风与他☁️博客首页:CSDN主页听风与他每日一句:狠狠沉淀,顶峰相见目录前言计算机网络21世纪的特征早期网络分类互联网互联网概述计算机网络互联网服务提供者ISP互联网交换点IXP互联网的组成边缘部分计算机之间通信核心部分分组交换计算机网络类别1.按照网络的作用范围来进行分类2.
- 计算机网络的分类
不会游泳的鱼ꦿ
网络分类
计算机网络的分类划分形式:①网络的作用范围。②网络的传输技术方式。③网络的通信介质。④网络的通信速率。⑤网络的使用范围。⑥网络的控制方式。⑦网络的拓扑结构。具体如下:1.按网络的作用范围分类(1)局域网(LAN)。局域网是计算机通过高速线路相连组成的网络,一般限定在较小的区域内。覆盖的地理范围从几十米到几千米之内。(2)城域网(MAN)。城域网一般限定在一座城市的范围内,覆盖的地理范围从几十千米到
- LLM主要类别架构
大模型微调实战
人工智能langchain自然语言处理神经网络深度学习
LLM主要类别架构介绍LLM主要类别LLM本身基于transformer架构。自2017年,attentionisallyouneed诞生起,transformer模型为不同领域的模型提供了灵感和启发。基于原始的Transformer框架,衍生出了一系列模型,一些模型仅仅使用encoder或decoder,有些模型同时使encoder+decoder。LLM分类一般分为三种:自编码模型(encod
- 计算机网络之计算机网络的分类
DKPT
#计算机网络计算机网络笔记学习开发语言算法
计算机网络可以根据不同的角度进行分类,以下是几种常见的分类方式:1.按照规模和范围:局域网(LAN,LocalAreaNetwork):覆盖较小范围(例如一个建筑物或校园),通常使用以太网技术。城域网(MAN,MetropolitanAreaNetwork):覆盖城市范围,通常由多个局域网组成,通过高速光纤连接。广域网(WAN,WideAreaNetwork):覆盖较大范围,可以跨越城市、国家甚至
- 《DeepSeek-R1 问世,智能搜索领域迎来新变革》
黑金IT
智能搜索
DeepSeek-R1是由DeepSeek公司开发的一款创新型人工智能模型,自2024年5月7日发布以来,迅速在AI领域引起广泛关注。该模型凭借其卓越的语言理解能力、高效的数据处理能力、自适应学习能力、高安全性与可靠性以及广泛的应用场景与拓展性,在众多人工智能模型中脱颖而出。DeepSeek-R1的核心特点强大的语言理解能力:DeepSeek-R1采用先进的深度学习算法,能够精准解析复杂的语义结构
- SpringBoot+Vue.js协同过滤算法美食推荐小程序
wqq_992250277
javajava
摘要伴随着我国社会的发展,人民生活质量日益提高。于是对各种需求进行规范而严格是十分有必要的,所以许许多多的微信小程序应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套协同过滤算法美食推荐小程序,帮助美食推荐进行美食分类、美食信息、订单信息等繁琐又重复的工作,提高工作效率的同时,也减轻了管理者的压力。本论文的主要内容包括:第一,研究分析当下主流的Uni-weixin技术,结
- AI绘画关键词(咒语)分析与热点研究
集eee
AI作画midjourneychatgpt人工智能prompttext2imgstablediffusion
语义文本图像生成技术关键词分析与热点研究一、研究背景与研究意义随着深度学习的发展,语义文本到图像的生成技术已经取得长足进步,AI绘画也因此快速崛起。只需输入关键词,AI系统就能自动生成符合语义描述的图像,这一技术的出现,使绘画的创作方式发生革命性变化。目前主流的AI绘画模型有Midjourney、Stablediffusion和文心一格等,其使用方式多为输入一段含有图片描述的“prompt(指令)
- matlab的多线程操作
m0_74823044
面试学习路线阿里巴巴资料职业发展matlab单片机开发语言后端
matlab的多线程操作先导知识一、结论二、定时器timer三、多进程操作先导知识听说过:定时器中断、线程、进程知道:matlab的帮助文档使用方式,如:docmemmapfile、helpmemmapfile理解:回调函数,同步回调、异步回调(不知道也没关系,csdn里面很多人都写了这个)一、结论截止到2021a版本,matlab不能实现传统意义的多线程,但是可以实现并行计算(docparall
- 5 分钟 JS 设计模式 - 单例与观察者模式(第19节)
星核日记
《5分钟JS说》javascript设计模式观察者模式开发语言前端ecmascript
目录5分钟JS说第19节:JavaScript设计模式引言1.什么是设计模式?1.1设计模式的分类1.2为什么需要设计模式?2.单例模式2.1单例模式的核心思想2.2实现单例模式2.2.1基本实现2.2.2目录结构2.2.3代码注释2.3单例模式的应用场景3.工厂模式3.1工厂模式的核心思想3.2实现工厂模式3.2.1简单工厂模式3.2.2目录结构3.2.3代码注释3.3工厂模式的应用场景4.观察
- 基于深度学习的大规模模型训练
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的大规模模型训练涉及训练具有数百万甚至数十亿参数的深度神经网络,以处理复杂的任务,如自然语言处理、计算机视觉和语音识别。以下是关于基于深度学习的大规模模型训练的详细介绍:1.背景和动机数据和模型规模增长:随着数据量和模型复杂度的增加,传统的单机或小规模集群训练难以满足需求。计算资源需求:大规模模型训练需要大量计算资源和存储,单一设备无法满足。任务复杂性:处理复杂任务(如GPT-3、BE
- 开关电源matlab仿真,用数学方法建立一种开关电源全系统的仿真模型
照月鱼yoyi
开关电源matlab仿真
引言通过数学的方法,把小功率开关电源系统表示成数学模型和非线性控制模型,建立一种开关电源全系统的仿真模型,提高了仿真速度。Matlab是一个高级的数学分析软件,Simulink是运行在Matlab环境下,用于建模、仿真和分析动态系统的软件包,它支持连续、离散及两者混合的线性及非线性系统。在Matlab5.2中推出了电力系统工具箱,该工具箱可以与Simulink配合使用,能够更方便地对电力电子系统进
- 基于麻雀搜索算法SSA求解最优目标
pytorchCode
人工智能python算法Matlab
基于麻雀搜索算法SSA求解最优目标麻雀搜索算法(SparrowSearchAlgorithm,SSA)是一种启发式优化算法,灵感来自于麻雀的群体行为。该算法模拟了麻雀在寻找食物时的搜索过程,通过合作和竞争来找到最佳解决方案。在本文中,我们将介绍如何使用SSA算法来求解最优目标,并提供相应的MATLAB源代码。首先,我们需要定义问题的目标函数。假设我们要求解的目标是最小化一个连续的优化问题。那么,我
- 基于elk的springboot web日志收集存储方案
Albertliuc
javaspringbootelkspringboot前端
目录WEB日志分类处理方案ELK安装Elasticsearch安装Logstash安装kibana导入依赖AOP做接口日志输出日志entity类AOPAspect类logback-spring.xml配置YML配置WEB日志分类处理方案web系统的日志按照价值排序分类controller层的接口访问日志(debug日志)自定义包下的其他日志(debug日志)全局日志①全局错误日志②部分组件的deb
- 【Python TensorFlow】入门到精通
极客代码
玩转Pythonpythontensorflow开发语言人工智能深度学习
TensorFlow是一个开源的机器学习框架,由Google开发,广泛应用于机器学习和深度学习领域。本篇将详细介绍TensorFlow的基础知识,并通过一系列示例来帮助读者从入门到精通TensorFlow的使用。1.TensorFlow简介1.1什么是TensorFlow?TensorFlow是一个开源的软件库,主要用于数值计算,特别是在机器学习和深度学习领域。它提供了一个灵活的架构来定义复杂的数
- 【学习心得】Python好库推荐——PEFT
小oo呆
【学习心得】人工智能python语言模型
一、PEFT是什么?PEFT(Parameter-EfficientFine-Tuning)是一种在深度学习中进行参数高效微调的技术。这种技术主要应用于大型预训练模型的微调过程中,目的是在保持模型性能的同时减少所需的计算资源和时间。通过PEFT,可以有效地调整模型以适应特定任务或数据集,而无需对整个模型的所有参数进行全面微调。二、PEFT使用场景在计算资源有限的情况下,如边缘设备、移动设备或低成本
- 深度学习训练模型损失Loss为NaN或者无穷大(INF)原因及解决办法
余弦的倒数
学习笔记机器学习深度学习pytorch深度学习人工智能机器学习
文章目录一、可能原因==1.学习率过高====2.batchsize过大==3.梯度爆炸4.损失函数不稳定5.数据预处理问题6.数据标签与输入不匹配7.模型初始化问题8.优化器设置问题9.数值问题==10.模型结构设计缺陷==二、调试步骤三、常见预防措施一、可能原因1.学习率过高原因:学习率过高可能导致梯度爆炸,权重更新幅度过大,导致模型参数变为无穷大或NaN。学习率设置过大是常见问题,它会让参数
- 深度解读大语言模型中的Transformer架构
老三不说话、
transformer
一、Transformer的诞生背景传统的循环神经网络(RNN)和长短期记忆网络(LSTM)在处理自然语言时存在诸多局限性。RNN由于其递归的结构,在处理长序列时容易出现梯度消失和梯度爆炸的问题。这导致模型难以捕捉长距离的依赖关系,对于复杂的自然语言文本,无法有效地学习到上下文的关键信息。LSTM虽然在一定程度上缓解了梯度消失的问题,但依然存在梯度不稳定的情况。而且,RNN和LSTM在计算过程中,
- 模型高效推理--剪枝基础
绒绒毛毛雨
大模型算法剪枝深度学习人工智能
文章目录一、剪枝基础1.剪枝定义2.剪枝时机二、剪枝的分类1.按照剪枝粒度分类(粗➡️细)A.结构化剪枝a.隐藏层剪枝(LayerPruning)b.通道剪枝(ChannelPruning)c.卷积核剪枝(KernelPruning)B.非结构化剪枝a.核内权重剪枝(IntraKernelWeightPruning)b.单个权重剪枝(WeightPruning)C.特殊情况a.Token剪枝(To
- 2.3、numpy 数组:广播机制、遍历数组
融码一生
Python数据处理与分析numpynumpypython开发语言数据分析
点击上方分类专栏、进行系统性学习(文末可扫码领取资料)1、广播机制NumPy中的广播机制(Broadcast)旨在解决不同形状数组之间的算术运算问题。如果进行运算的两个数组形状完全相同,它们直接可以做相应的运算。importnumpyasnpa=np.array([0.1,0.2,0.3,0.4])b=np.array([10,20,30,40])c=a*b#jy:[1.4.9.16.]print
- python中的迭代器和生成器
争xx鸣
python迭代器生成器
自学python过程中会遗漏一些东西,当初看书的时候碰到这些都跳过了,在一次面试中被问到了生成器,才意识到它在使用中的重要性,然后重新翻回去看了书并总结如下。1、迭代器(Iterator)在Python中的for循环使用的就是迭代器的机制,与C语言的循环有所不同。由于使用了迭代器,for循环除了支持常见的序列(元组、列表)外,还支持字典和文件对象。对于任何的可迭代对象都有一个iter方法,使用it
- 通过命令行工作流提升工作效率的实战教程(持续更新)
herosunly
大模型工作流实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了通过命令行工作流提升工作效率的实战教程,希望对使用大语言模型的同学们有所
- Python进阶————迭代器与生成器
记得多吃点
Python进阶知识python开发语言
迭代器与生成器前言一、迭代器二、生成器2.1创建生成器的两种方式2.1.1生成器推导式2.1.2yield关键字2.2使用生成器生成批次数据三、区别与联系3.1区别3.2联系总结前言我们之前学习遍历的时候,系统会一下子给我们显示所有的数据,我们希望当我们需要数据的时候再给我们数据,那么,我们就需要迭代器与生成器的帮助。迭代器和生成器在Python中都是用来处理数据序列的重要工具,它们之间的主要区别
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在