题目描述
Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1 ^ k1 ×p2 ^ k2 ×⋯×pm ^ km .
Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N =
p1 ^
k1 *
p2 ^
k2 *
…*
pm ^
km , where pi 's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi , ki is 1 and must NOT be printed out.
Sample Input :
97532468
Sample Output:
97532468=2^211171011291
考点
素数表建立
思路
1.建立素数表
2.从2开始判断该数是否为素数且是否能被p
整除
代码
#include
#include
using namespace std;
vector prime(500000, 1);
int main() {
for (int i = 2; i*i <= 500000; i++)
for (int j = 2; j*j <= 500000; j++)
prime[i*j] = 0;
long int p;
scanf("%ld", &p);
printf("%ld=", p);
if (p == 1) cout << "1";
bool state = false;
for (int i = 2; p >= 2; i++) {
int cnt = 0, flag = 0;
while (prime[i] == 1 && p%i == 0) {
cnt++;
p = p / i;
flag = 1;
}
if (flag) {
if (state) cout << "*";
cout << i;
state = true;
}
if (cnt >= 2)
printf("^%d", cnt);
}
return 0;
}