- 深度 Qlearning:在直播推荐系统中的应用
AGI通用人工智能之禅
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
深度Q-learning:在直播推荐系统中的应用关键词:深度Q-learning,强化学习,直播推荐系统,个性化推荐1.背景介绍1.1问题的由来随着互联网技术的飞速发展,直播平台如雨后春笋般涌现。面对海量的直播内容,用户很难快速找到自己感兴趣的内容。因此,个性化推荐系统在直播平台中扮演着越来越重要的角色。1.2研究现状目前,主流的个性化推荐算法包括协同过滤、基于内容的推荐等。这些方法在一定程度上缓
- 深度强化学习之DQN-深度学习与强化学习的成功结合
CristianoC
目录概念深度学习与强化学习结合的问题DQN解决结合出现问题的办法DQN算法流程总结一、概念原因:在普通的Q-Learning中,当状态和动作空间是离散且维数不高的时候可以使用Q-Table来存储每个状态动作对应的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。一是因为当问题复杂后状态太多,所需内存太大;二是在这么大的表格中查询对应的状态也是一件很耗时的事情。image通常的做法是把
- 基于时序差分的无模型强化学习:Q-learning 算法详解
晓shuo
算法强化学习
目录一、无模型强化学习中的时序差分方法与Q-learning1.1时序差分法1.2Q-learning算法状态-动作值函数(Q函数)Q-learning的更新公式Q-learning算法流程Q-learning的特点1.3总结一、无模型强化学习中的时序差分方法与Q-learning 动态规划算法依赖于已知的马尔可夫决策过程(MDP),在环境的状态转移概率和奖励函数完全明确的情况下,智能体无需与环
- Python知识点:如何使用Python实现强化学习机器人
杰哥在此
Python系列python机器人开发语言编程面试
实现一个强化学习机器人涉及多个步骤,包括定义环境、状态和动作,选择适当的强化学习算法,并训练模型。下面是一个简单的例子,使用Python和经典的Q-learning算法来实现一个强化学习机器人,目标是通过OpenAIGym提供的FrozenLake环境训练机器人学会如何在冰面上移动以找到目标。1.安装必要的库首先,需要安装OpenAIGym和Numpy。你可以使用以下命令安装它们:pipinsta
- 马尔可夫决策过程(Markov decision process,MDP)
太阳城S
学习笔记马尔可夫决策过程MDP机器学习深度学习
文章目录马尔可夫决策过程(MDP)在机器学习中应用在机器学习中的引用示例引用:实例场景:机器人导航MDP的定义:引用示例:在此基础上更具体的描述,并给出每一步的推断计算过程场景描述:3x3网格中的机器人导航MDP的定义强化学习算法:Q-Learning具体实例与推断计算过程回合1(Episode1Episode1Episode1)回合2(Episode2Episode2Episode2)回合3(E
- 强化学习入门:使用Python和Q-learning算法解决迷宫问题
Evaporator Core
python
文章标题:强化学习入门:使用Python和Q-learning算法解决迷宫问题简介强化学习是机器学习中的一个重要分支,它致力于研究智能体在与环境交互的过程中如何学习最优的行为策略。Q-learning算法是强化学习中的一个经典算法,它通过不断地探索和利用环境来学习最优的行为策略。本文将介绍如何使用Python编程语言和Q-learning算法解决迷宫问题,并通过可视化展示智能体学习过程。1.准备工
- Q-learning
de_b952
原文:https://blog.csdn.net/qq_30615903/article/details/80739243Q-learning是强化学习算法中value-based的算法,Q即为Q(s,a)就是在某一时刻的s状态下(s∈S),采取动作a(a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报rewardr,所以算法的主要思想就是将State与Action构建成一张
- 强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏
半亩花海
机器学习算法游戏机器学习人工智能
Hi,大家好,我是半亩花海。在本篇技术博客中,我们将探讨如何使用Q-Learning算法来解决TreasureonRight游戏,实现一个简单的强化学习。一、游戏背景TreasureonRight游戏——一个简单的命令行寻宝游戏,是一个经典的强化学习示例,它模拟了一个智能体在有限状态空间中寻找宝藏的过程。游戏环境由一个线性状态空间组成,智能体可以执行两个动作:向左移动或向右移动。目标是让智能体学会
- DQN的理论研究回顾
Jay Morein
强化学习与多智能体深度学习学习
DQN的理论研究回顾1.DQN简介强化学习(RL)(Reinforcementlearning:Anintroduction,2nd,ReinforcementLearningandOptimalControl)一直是机器学习的一个重要领域,近几十年来获得了大量关注。RL关注的是通过与环境的交互进行连续决策,从而根据当前环境制定指导行动的策略,目标是实现长期回报最大化。Q-learning是RL中
- 强化学习 - Q-learning(Q学习)
草明
数据结构与算法学习机器学习人工智能深度学习
什么是机器学习强化学习中的Q-learning(Q学习)是一种用于学习在未知环境中做出决策的方法。它是基于值函数的方法,通过学习一个值函数Q,该函数表示在给定状态和动作下,期望的累积奖励。以下是一个简单的Q-learning的实现教程,使用Python进行演示。这里我们考虑一个简单的驾驶代理程序在一个格子世界中学习如何最优地选择动作以达到目标。importnumpyasnp#定义格子世界的大小nu
- 【机器学习】强化学习(六)-DQN(Deep Q-Learning)训练月球着陆器示例
十年一梦实验室
机器学习人工智能
概述DeepQ-Learning(深度Q学习)是一种强化学习算法,用于解决决策问题,其中代理(agent)通过学习在不同环境中采取行动来最大化累积奖励。LunarLander是一个经典的强化学习问题,其中代理的任务是控制一个着陆舱在月球表面着陆,最小化着陆过程中的燃料消耗。以下是使用DeepQ-Learning解决LunarLander问题的基本步骤:环境建模:首先,需要对LunarLander环
- 强化学习12——策略梯度算法学习
beiketaoerge
强化学习算法学习机器学习强化学习
Q-learning、DQN算法是基于价值的算法,通过学习值函数、根据值函数导出策略;而基于策略的算法,是直接显示地学习目标策略,策略梯度算法就是基于策略的算法。策略梯度介绍将策略描述为带有参数θ\thetaθ的连续函数,可以将策略学习的目标函数定义为:J(θ)=Es0[Vπθ(s0)]J(\theta)=\mathbb{E}_{s_0}[V^{\pi_\theta}(s_0)]J(θ)=Es0[
- 强化学习11——DQN算法
beiketaoerge
强化学习算法强化学习
DQN算法的全称为,DeepQ-Network,即在Q-learning算法的基础上引用深度神经网络来近似动作函数Q(s,a)Q(s,a)Q(s,a)。对于传统的Q-learning,当状态或动作数量特别大的时候,如处理一张图片,假设为210×160×3210×160×3210×160×3,共有256(210×60×3)256^{(210×60×3)}256(210×60×3)种状态,难以存储,但
- 【机器学习】强化学习(四)-时序差分学习
十年一梦实验室
机器学习学习人工智能
蒙特卡洛算法需要使用完整的片段进行计算,这在有些问题中是不现实的,尤其是对于没有终止状态的问题。时序差分算法对此进行了改进蒙特卡洛控制和时序差分学习有什么区别?四、时序差分算法(TemporalDifferenceLearning,TD学习)4.1时序差分(0)4.2Sarsa算法4.3Q学习(Q-learning)4.4Sarsa和Q-learning有什么区别?4.5示例代码公共类:discr
- 强化学习应用(六):基于Q-learning算法的无人车配送路径规划(通过Python代码)
优化算法MATLAB与Python
Python优化算法算法python人工智能开发语言
一、Q-learning算法介绍Q-learning是一种强化学习算法,用于解决基于环境的决策问题。它通过学习一个Q-table来指导智能体在不同状态下采取最优动作。下面是Q-learning算法的基本步骤:1.定义环境:确定问题的状态和动作空间,并创建一个变量来表示环境。2.初始化Q-table:创建一个Q-table,其大小与状态和动作空间相匹配,并将所有Q值初始化为0。3.设置超参数:设置一
- 使用 Q-learning 算法解决简单的开发环境中的智能体控制问题。
mqdlff_python
强化学习实战算法python机器学习
当涉及到完整的强化学习案例时,考虑到时间和复杂性,下面是一个简单的案例:使用Q-learning算法解决简单的开发环境中的智能体控制问题。问题描述:在一个简化的网格世界中,有一个智能体(agent)需要学习如何在不同位置移动以达到目标位置,智能体需要选择行动以最大化累积的奖励。解决方案:步骤:环境建模:创建一个简单的网格世界环境,包括状态空间、行动空间和奖励机制。每个状态代表智能体在网格中的位置。
- 【机器学习故事版】《围棋小将的智慧之旅》
德天老师
机器学习人工智能
在一个遥远的围棋王国里,住着一个名叫Q-learner的小棋手。这个王国里的棋盘简化成了3x3大小(实际围棋远大于此,但为了方便理解,我们先从简单开始)。有一天,Q-learner决定通过学习来提升自己的棋艺。他找来一本神秘的《围棋秘诀》,书中记载了一种神奇的方法——Q-learning。Q-learner准备了一块干净的棋盘(SimpleGoEnv环境),classSimpleGoEnv(Env
- 【机器学习】强化学习 (一)强化学习简介
十年一梦实验室
机器学习人工智能
一、强化学习简介1.1问题定义1.2马尔可夫决策过程举例说明马尔可夫决策过程例1:例2:执行动作的策略强化学习的目标是让智能体通过不断尝试,找到最优的策略(policy),即在每个状态下选择什么动作,以最大化累积的奖励。强化学习的常见算法有:Q学习(Q-learning):一种基于值函数(valuefunction)的方法,它用一个表格(Q-table)记录每个状态-动作对的期望奖励(Q-valu
- 强化学习AI构建实战 - 基于“黄金点”游戏(一)
人工智能MOS
人工智能游戏机器学习深度学习
简介强化学习(ReinforcementLearning)是机器学习的一种重要技术。本文首先简要介绍了强化学习的概念及思路,然后以Q-Learning算法为例介绍了如何进行训练。随后又介绍了黄金点游戏,并介绍了如何设计实现基于规则的、基于识别的、基于学习的策略BOT来进行比赛。强化学习人类如何学习?在讲解强化学习之前,我们先来了解下人类是如何进行学习的。我们在AzureNotebook上提供了一个
- 强化学习应用(二):基于Q-learning的无人机物流路径规划研究(提供Python代码)
IT猿手
QlearningpythonTSP无人机python开发语言深度强化学习强化学习TSP
一、Q-learning简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能获得的预期累积奖励。算法的基本步骤如下:1.初始化Q值表格,将所有Q值初始化为0。2.在每个时间步
- 强化学习应用(一):基于Q-learning的无人机物流路径规划研究(提供Python代码)
IT猿手
TSPQlearningpython无人机python开发语言深度强化学习强化学习Qlearning
一、Q-learning简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能获得的预期累积奖励。算法的基本步骤如下:1.初始化Q值表格,将所有Q值初始化为0。2.在每个时间步
- 强化学习应用(七):基于Q-learning的物流配送路径规划研究(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言算法人工智能强化学习
一、Q-learning算法简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。Q-learning算法的更新
- 强化学习应用(六):基于Q-learning的物流配送路径规划研究(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言算法人工智能强化学习
一、Q-learning算法简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。Q-learning算法的更新
- 强化学习应用(五):基于Q-learning的物流配送路径规划研究(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言人工智能强化学习算法
一、Q-learning算法简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。Q-learning算法的更新
- 强化学习应用(八):基于Q-learning的物流配送路径规划研究(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言人工智能强化学习算法
一、Q-learning算法简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。Q-learning算法的更新
- 强化学习- Actor-Critic 算法
下一个拐角%
强化学习算法python开发语言
提出理由::REINFORCE算法是蒙特卡洛策略梯度,整个回合结束计算总奖励G,方差大,学习效率低。G随机变量,给同样的状态s,给同样的动作a,G可能有一个固定的分布,但是采取采样的方式,本身就有随机性。解决方案:单步更新TD。直接估测G这个随机变量的期望值,拿期望值代替采样的值基于价值的(value-based)的方法Q-learning。Actor-Critic算法,结合策略梯度+时序差分的方
- 强化学习应用(三):基于Q-learning的物流配送路径规划研究(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言算法人工智能强化学习
一、Q-learning算法简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。Q-learning算法的更新
- 强化学习应用(一):基于Q-learning的物流配送路径规划研究(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言人工智能算法
一、Q-learning算法简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。Q-learning算法的更新
- 强化学习应用(二):基于Q-learning的物流配送路径规划研究(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言算法人工智能
一、Q-learning算法简介Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。Q-learning算法的更新
- 强化学习求解TSP(八):Qlearning求解旅行商问题TSP(提供Python代码)
优化算法MATLAB与Python
Python优化算法python开发语言
一、Qlearning简介Q-learning是一种强化学习算法,用于解决基于奖励的决策问题。它是一种无模型的学习方法,通过与环境的交互来学习最优策略。Q-learning的核心思想是通过学习一个Q值函数来指导决策,该函数表示在给定状态下采取某个动作所获得的累积奖励。Q-learning的训练过程如下:1.初始化Q值函数,将所有状态-动作对的Q值初始化为0。2.在每个时间步,根据当前状态选择一个动
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR