- 【LangChain编程:从入门到实践】数据库问答场景
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】数据库问答场景作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在现代信息社会中,数据的爆炸性增长使得如何高效地从海量数据中提取有用信息成为一个重要课题。数据库问答系统(DatabaseQuestionAnsweringSystem,DBQA)作为一种能够直接从数据库中获取答案的技术,
- OpenAI 函数调用 功能入门
AI火箭
chatgptopenai
Javascript版Langchain入门作者:AI小火箭的HB我是AI小火箭的HB,我探索和写作人工智能和语言交叉点的所有事物,范围从LLM,聊天机器人,语音机器人,开发框架,以数据为中心的潜在空间等。介绍LangChain是一个开源Python库,用于构建由大型语言模型(LLM)支持的应用程序。它提供了一个框架,将LLM与其他数据源(如互联网或个人文件)连接起来,允许开发人员将多个命令链接在
- 初学者指南:借助 LangChain 构建 LLM 驱动的应用程序!
初学者指南:借助LangChain构建LLM驱动的应用程序!原文链接:ABeginner’sGuidetoBuildingLLM-PoweredApplicationswithLangChain!作者:PavanBelagatti译者:倔强青铜三前言大家好,我是倔强青铜三。作为一名对技术充满热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新。欢迎关注我,微信公
- 9.1 LangChain深度解析:大模型应用开发的“万能胶水”与核心架构设计
少林码僧
AI大模型应用实战专栏langchaingpt人工智能chatgpt
LangChain深度解析:大模型应用开发的“万能胶水”与核心架构设计关键词:LangChain教程、大模型应用开发、AI开发框架、LangChain核心模块、智能体开发一、LangChain是什么?重新定义大模型应用开发范式LangChain是一个专为大语言模型(LLM)应用开发设计的开源框架,由HarrisonChase于2022年创建。它被开发者社区称为“AI应用开发的乐高积木”——通过标准
- Llama.cpp与Python的完美结合:快速入门指南
nseejrukjhad
llamapython开发语言
Llama.cpp与Python的完美结合:快速入门指南引言在现代AI的浪潮中,Llama.cpp提供了一种便捷的方法,将大型语言模型(LLM)集成到您的项目中。本文将介绍如何在Python中使用llama-cpp-python,并结合LangChain框架进行推理操作。通过本指南,您将逐步掌握如何安装、配置和使用Llama模型。主要内容Llama模型转换首先,新版本llama-cpp-pytho
- **Unlock the Potential of LangChain: Using Custom Functions as Runnables**
dsndnwfk
langchain前端python
引言LangChain为开发者提供了强大的工具链来构建复杂的AI应用。在这篇文章中,我们将深入探讨如何将自定义函数作为LangChain中的Runnables使用。这对于需要特定功能的开发场景,或是数据格式化需求尤为重要。本文将引导您通过使用RunnableLambda构造器和方便的@chain装饰器来实现这一目标。主要内容1.使用RunnableLambda构造器创建Runnable在LangC
- 创建自定义示例选择器以优化语言翻译模型
dsndnwfk
easyui前端javascriptpython
引言在构建自然语言处理模型时,一个常见的挑战是如何从大量示例中选择合适的子集来提高模型的性能和响应速度。本文将介绍如何使用自定义的示例选择器来优化语言翻译模型,特别是将英语翻译成意大利语的任务。我们将展示如何实现和使用一个基于输入长度差异选择示例的Selector。主要内容示例选择器接口在LangChain中,示例选择器负责编排用于提示的示例列表。所有选择器都基于BaseExampleSelect
- [如何在LangChain中实现安全集成:最佳实践与应对策略]
dsndnwfk
langchain安全数据库python
如何在LangChain中实现安全集成:最佳实践与应对策略在现代应用开发过程中,安全集成是一个非常重要的环节。LangChain作为一个拥有广泛生态系统的库,支持与各种外部资源进行集成,如本地和远程文件系统、API和数据库。这些集成使开发人员能够创建结合LLM(大语言模型)强大功能和外部资源交互的多样化应用。然而,安全问题不容忽视。本文将深入探讨在LangChain应用中实现安全集成的最佳实践,并
- LangGraph系列-1:用LangGraph构建简单聊天机器人
梦想画家
机器学习LangGraphLangChain
在快速发展的人工智能和大型语言模型(llm)世界中,开发人员不断寻求创建更灵活、更强大、更直观的人工智能代理的方法。虽然LangChain已经改变了这个领域的游戏规则,允许创建复杂的链和代理,但对代理运行时的更复杂控制的需求也在不断增长。LangGraph是建立在LangChain之上的重要模块,它将彻底改变我们设计和实施人工智能工作流的方式。在这篇博客中,我们提供了一个关于构建聊天机器人和彻底改
- 5 个遥遥领先的大模型 RAG 工具
机器学习社区
大模型大模型算法人工智能RAG多模态大模型语言模型
想象一下拥有一种超能力,让你能够对任何问题或提示生成类似人类的回答,同时还能够利用庞大的外部知识库确保准确性和相关性。这不是科幻小说,这就是检索增强生成(RAG)的力量。在本文中,我们将介绍五大遥遥领先的RAG工具或库:LangChain、LlamaIndex、Haystack、RAGatouille和EmbedChain。LangChainLangChain是一个全面的开源框架,用于开发大型语言
- 轻松实现 vLLM Chat:用 LangChain 替代 OpenAI API
ahdfwcevnhrtds
langchainpython
引言在现代应用中,使用语言模型进行自动化对话生成已经成为一个重要趋势。vLLM作为开源的语言模型实现,可以部署成一个模拟OpenAIAPI协议的服务器,方便成为应用中的替代方案。本篇文章将介绍如何使用LangChain的langchain-openai包来轻松实现vLLMChat。主要内容vLLM概述vLLM可以作为一个服务部署,模拟OpenAIAPI协议,从而成为OpenAIAPI的替代方案。通
- 探索GigaChat与LangChain的完美结合:深度解析与实战指南
asdfujhgy
langchaineasyui前端python
探索GigaChat与LangChain的完美结合:深度解析与实战指南引言在人工智能的领域中,语言模型和嵌入技术正逐步改变我们与数据交互的方式。GigaChat作为一种创新的AI嵌入服务,结合LangChain可以提供强大的文本嵌入功能,促进自然语言处理任务的完成。本篇文章将带你深入了解如何结合GigaChat与LangChain进行文本嵌入,并提供实用的代码示例与解决方案。主要内容GigaCha
- 深度学习-70-大语言模型LLM之基于大模型LLM与检索增强技术RAG的智能知识库
皮皮冰燃
深度学习人工智能深度学习语言模型
文章目录1RAG出现的背景2搭建过程2.1数据收集2.2数据处理2.2.1数据清洗与预处理2.2.2文本分块2.2.3微调数据格式统一2.3建立向量索引2.4大模型选择与微调3开源知识库项目3.1FastGPT3.2AnythingLLM3.3LangChain-Chatchat4商业化解决方案4.1百度智能云+千帆大模型知识库4.2阿里云PAI+向量检索5参考附录1RAG出现的背景自从2022年
- 【大语言模型LangChain】 ModelsIO OutputParsers详解
敲代码敲到头发茂密
人工智能测试开发语言模型langchainandroid人工智能python
【大语言模型LangChain】ModelsIOOutputParsers详解一、简介二、OutputParsers的优势三、解析器类型四、实战示例1、String解析器2、Json解析器3、Pydantic解析器4、结构化输出解析器5、OpenAI函数输出解析器5.1、JsonOutputFunctionsParser5.2、JsonKeyOutputFunctionsParser5.3、Pyd
- 如何让ChatGPT接入互联网?
Tensor维度
AIGCchatgptlangchainAIGC语言模型
一、前言使用谷歌搜索引擎实现的最终效果:搜索引擎一次返回10条搜索结果数据每条数据标题都带有链接地址,点击可跳转到对应网页;标题之后的内容为LLM模型根据原始网页内容整理之后输出的内容搜索引擎搜索出的内容让ChatGPT整理后返回到Chatbot上上述应用开源地址:https://github.com/hubo0417/EasyGC1、背景前段时间自己基于LangChain+ChatGLM2-6B
- 构建桌面聊天助手:Mistral AI、LangChain 和 Tkinter 的结合
花生糖@
AIGC学习资料库人工智能langchaineasyuiMistralAITkinterAI助手
在人工智能(AI)技术日新月异的今天,大型语言模型(LLMs)和LangChain成为了炙手可热的话题。作为一名开发者,我最近进行了一项实验,旨在创建一个实用的工具,将强大的AI功能与Python编程语言的简洁性结合起来,为用户提供便捷的服务。这次实验的成果是一款专为记者设计的桌面聊天助手,它使用了MistralAI提供的强大自然语言处理能力,并通过LangChain进行集成,同时利用Tkinte
- Langchain本地知识库部署
MaxCode-1
langchain
本地部署(Docker+LangChain+FAISS)1.概述本地部署LangChain-Chatchat可以为企业提供高效、安全、可控的AI知识库方案。本方案基于Docker、LangChain和FAISS进行本地化部署,适用于企业内部知识库问答、私有化AI应用等场景。2.技术选型2.1LangChainLangChain是一个开源的LLM(大语言模型)应用开发框架,支持多种模型和数据源,适用
- Langchain[6]-LangGraph:异步和流、图可视化、多智能体协作、LCEL代码生成
汀、人工智能
AIAgentlangchainAIAgentLangGraph多智能体协作AI智能体AI大模型Agent框架
Langchain[6]-LangGraph:异步和流、图可视化、多智能体协作、LCEL代码生成1.异步和流因为任何大模型在推理的时候,都会有一定的时间延迟,这是由大模型的底层架构决定的,所以在很多应用,尤其是对话应用中,使用异步以及流式输出,是大幅提升用户体验的较好方法。在langGraph中可以很方便的实现异步和流,简单例子为例:异步调用方法:inputs={"messages"
- 深入解析LangChain框架:使用Python开发LLM应用的全生命周期指南
m0_57781768
langchainpython网络
深入解析LangChain框架:使用Python开发LLM应用的全生命周期指南前言在当前的人工智能浪潮中,大型语言模型(LLM)已成为众多应用的核心。LangChain是一个专为开发大型语言模型应用而设计的框架,它简化了LLM应用的整个生命周期,包括开发、生产化和部署。本文将详细介绍LangChain框架的各个方面,涵盖其核心组件、第三方集成、开发教程、API参考等,并通过实际案例展示如何使用La
- 深度学习-97-大语言模型LLM之基于langchain的实体记忆和知识图谱记忆
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1内存记忆Memory1.1记忆系统支持的操作1.2记忆的存储1.3记忆的查询2记忆的应用2.1设置环境变量2.2ConversationEntityMemory实体记忆2.3ConversationKGMemory知识图谱记忆2.3.1创建ConversationKGMemory2.3.2创建ConversationChain2.4ConversationBufferWindowMemo
- 再分享API形式调用Dify项目应用
福安德信息科技
大模型python人工智能大模型llmdify
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。RAGOnMedicalKG:大模型结合知识图谱的RAG实现DSPy:变革式大模型应用开发最简明的Few-shotPrompt指南SemanticKernel:微软大模型开发框架——LangChain替代对话大模型Prompt是否需要
- 基于Langchain框架,采用Qwen2.5大模型,搭建自己的Agent,ReACT效果比RAG好
张登杰踩
langchainpython人工智能语言模型
最近在做RAG,调研后发现ReACT好像更具有说服力,对最终结果的解释也更加合理。举个例子,我扔给大模型这样一个问题:15的平方是多少?另外,法国的首都是哪里?采用ReACT的运行结果如下:>EnteringnewAgentExecutorchain...我需要先计算15的平方,然后搜索法国的首都。Action:平方计算器ActionInput:"15"Observation:15的平方等于225
- 深度学习-94-大语言模型LLM之基于langchain的链Chain的基础应用和调用方式
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Chain链的分类1.1LCELChains(链构造器)1.2LegacyChains(遗留链)2链的基础应用2.1OllamaLLM2.2是否使用chain的对比2.2.1不使用Chain2.2.2使用Chain3链的调用方式3.1通过invoke方法【推荐】3.2通过predict方法3.3通过apply方法3.4通过generate方法4参考附录1Chain链的分类为开发更复杂的应
- 使用Zapier Natural Language Actions与LangChain集成实现自动化工作流
srudfktuffk
langchain自动化windowspython
技术背景介绍ZapierNaturalLanguageActions(NLA)提供了一种通过自然语言接口访问Zapier平台上5000多个应用和20000多个操作的方法。通过NLA,你可以将自然语言翻译成具体的API调用并获取简化的输出。这使得在复杂的多应用环境中进行自动化操作变得更加轻松。然而需要注意的是,ZapierNLA将在2023年11月17日停用。核心原理解析NLA的核心思想是通过类似O
- 使用AI技术从Telegram导入数据到LangChain
fGVBSAbe
langchainpython
技术背景介绍Telegram是一款全球范围内可供使用的即时通讯软件,支持多种平台并提供安全的加密通讯。对于开发者而言,它提供了丰富的API接口,可以用于自动化数据处理和集成。本文将介绍如何将Telegram中的聊天数据导入到LangChain,这是一种数据处理和分析工具,能够帮助开发者更高效地管理和分析聊天记录。核心原理解析我们将使用LangChain提供的TelegramChatApiLoade
- 如何使用Langchain加载Blackboard文档
PPIG564
langchain前端python
在当今数字化和网络化的学习环境中,Blackboard已成为许多教育机构的关键工具。为了有效地集成和利用Blackboard中的数据,开发人员可以使用特定的工具来加载和处理这些数据。Langchain是一个强大的Python库,能够帮助我们轻松地处理Blackboard中的文档数据。在本文中,我们将深入了解如何使用Langchain来加载Blackboard文档。技术背景介绍BlackboardL
- SQLDatabase Toolkit: 搭建基于SQL数据库的智能问答系统
azzxcvhj
数据库sqljvmpython
技术背景介绍SQLDatabaseToolkit是一个非常有用的工具集,旨在与SQL数据库进行交互。它的常见应用场景是通过数据库数据构建问答系统,特别是在需要迭代处理和错误恢复的情况下。此工具包在LangChain社区包中提供,支持多种大型语言模型(LLM)或聊天模型的集成。核心原理解析SQLDatabaseToolkit的核心功能包括查询执行、模式查找以及查询检查等。借助这些工具,可以构建一个智
- 如何贡献开源项目LangChain:完整指南
azzxcvhj
开源langchainpython
LangChain是一个快速发展的开源项目,旨在构建强大的AI应用程序框架。作为一名开发者或技术爱好者,你或许希望为这个项目贡献力量,无论是开发新功能、修复bug、改进文档,还是参与讨论和设计。这篇文章将详细介绍如何高效地加入LangChain的开发与贡献,帮助你事半功倍。1.技术背景介绍LangChain是一个专注于构建多模态AI应用的框架,通过模块化的方式集成各种工具和服务。随着其生态的不断扩
- 基于LangChain与ChatPremAI的交互应用开发指南
GEAWfaacc
langchain人工智能python
在当前AI技术蓬勃发展的背景下,生成式AI为许多应用带来了创新的机会。而PremAI平台正是通过简化开发流程,让开发者专注于提升用户体验和推动应用增长的一个重要工具。本指南将介绍如何使用LangChain与ChatPremAI进行交互,并快速开发出生产就绪的应用。技术背景介绍LangChain是一个强大的工具库,旨在帮助开发者轻松地将语言模型集成到各种应用中。而ChatPremAI则作为一个一体化
- Agent评估【Langchain】
BBluster
langchain
Agent评估【LangChain&LangSmith】简介LangChain提供了三种LLM-Agent的评估方案最终响应:评估代理的最终响应单步:单独评估任何代理步骤(例如,是否选择了适当的工具)轨迹:评估代理是否采用了预期路径(例如,工具调用)来得出最终答案构建智能体接下来将使用LangGraph构建一个Agent环境设置下载依赖项pipinstall--upgrade--quietlang
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc