- 【Spark】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
petrel2015
spark大数据分布式数据库
在学习Spark的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。相同点分区(Partitioning)和分桶(Bucketing)在很多方面具有相似性,它们都是用于优化大数据查询性能的技术数据划分的目的:优化查询性能分区和分桶的核心目标是通过将数据分割成更小的逻辑单元来
- Docker之安装与配置
雨五夜
Dockerdocker容器运维
Docker之安装与配置一、Docker环境配置1.基本配置2.镜像加速3.网络配置4.数据持久化5.优化建议6.常见问题与解决方案7.补充工具二、Docker配置本地仓库指南1.拉取Registry镜像2.启动本地仓库3.配置Docker客户端Linux/macOSWindows4.推送镜像到本地仓库标记镜像推送镜像5.推送镜像到本地仓库6.管理本地仓库7.优化与安全性8.常见问题一、Docke
- 性能优化中如何“避免链接关键请求”
混血哲谈
性能优化
在性能优化中,“避免链接关键请求”是指通过优化资源加载顺序和依赖关系,减少关键渲染路径中的链式请求(CriticalRequestChains),从而加速页面加载。以下是具体策略及实施步骤:一、什么是“关键请求链”?定义:关键请求链是浏览器在渲染首屏内容时必须按顺序加载的资源序列。例如:HTMLCSSFont浏览器需先下载HTML,解析后请求CSS,CSS解析后发现需要字体文件,再请求字体。问题:
- A800核心加速技术深度剖析
智能计算研究中心
其他
内容概要作为第三代异构计算架构的典型代表,A800通过深度融合通用计算单元与专用加速模块,构建了高度灵活的资源调度体系。其核心突破在于将矩阵运算、并行任务分发与内存访问路径进行系统性重构,解决了传统架构中计算密度与能效失衡的行业痛点。通过实测数据显示,在典型AI训练场景下,A800相较于前代架构实现了3.2倍的吞吐量提升,同时单位功耗下的指令执行效率优化达47%。技术维度第二代架构A800架构提升
- H200架构升级与实战解析
智能计算研究中心
其他
内容概要作为新一代高性能计算平台的核心载体,H200架构通过系统性硬件重构实现了计算性能的显著跃迁。本文将从芯片级设计革新出发,剖析其多维度升级路径:首先解读计算单元拓扑重组带来的并行效率提升,阐释内存子系统的带宽优化策略;继而拆解面向AI训练场景的混合精度加速机制,以及科学计算工作负载的动态资源调度方案。通过比对行业典型部署案例中的能效曲线与吞吐表现,系统化呈现H200在模型训练加速、大规模仿真
- H800能效架构实战解析
智能计算研究中心
其他
内容概要H800能效架构以异构计算资源调度与动态功耗控制为核心,通过系统级协同设计实现算力密度与能耗优化的双重目标。其核心技术覆盖智能负载分配、电压频率动态调节及热管理三大模块,形成从芯片级到数据中心级的垂直优化链路。在架构设计中,异构资源调度算法通过实时分析任务特征与硬件状态,动态分配CPU、GPU及专用加速器资源,最大化硬件利用率;动态功耗模块则基于负载波动自适应调整供电策略,结合多级电压频率
- 算力技术创新与多场景应用突破
智能计算研究中心
其他
内容概要算力技术创新正成为驱动数字经济发展的核心引擎,其演进路径呈现出多维度突破态势。从量子计算颠覆性架构到光子计算超高速特性,从异构计算资源动态整合到边缘计算实时响应机制,技术革新持续突破物理边界与能耗瓶颈。应用层面,工业互联网实时控制、元宇宙沉浸式交互、生物计算精准建模等场景对算力提出差异化需求,推动智能调度算法与能效管理体系的协同优化。与此同时,全国一体化算力网络建设加速芯片制程迭代、数据中
- 【零基础入门】一篇弄懂nn.Sequential以及ModuleList的使用(呕心沥血版)
十二月的猫
PyTorch深度学习pytorch零基础入门
个人主页:十二月的猫-CSDN博客系列专栏:《PyTorch科研加速指南:即插即用式模块开发》CSDN博客十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光目录1.前言2.Sequential类的使用2.1序列容器简单注入2.2序列容器字典注入2.3序列容器函数注入2.4序列容器修改2.5序列容器删除3.nn.ModuleList()的使用3.1定义模型3.2使用模型4.总结1.前言《
- 打造金融数据新引擎,看永洪科技助力头部农信社搭建一站式分析平台
永洪科技
金融数据可视化BI数据分析大数据
在数字化转型的浪潮中,金融行业作为经济发展的核心引擎,正加速探索数字化、智能化的新路径。永洪科技,近日成功助力某省农村信用社联合社(简称:Z企业)完成了其数字化转型的重要一步,通过部署先进的商业智能解决方案,为Z企业的业务升级与效能提升注入了强劲动力。随着智能金融时代的来临,以大数据、人工智能、移动互联等新兴技术为核心的金融科技持续赋能银行金融业务数字化、智能化、开放化的发展,为金融机构营销体系的
- OpenCV 4.2.0与扩展模块安装与应用指南
土城三富
本文还有配套的精品资源,点击获取简介:OpenCV4.2.0是一个先进的计算机视觉库,包含了图像处理、计算机视觉和机器学习算法。本压缩包包含OpenCV核心库和扩展模块(opencv_contrib),版本均为4.2.0。该版本引入了性能增强、API优化以及对深度学习框架和硬件加速技术的更新支持。扩展模块提供了额外的实验性算法和功能,有助于研究和开发新算法。指南详细介绍了如何安装和配置这些库,并提
- 从注册到落地:Temu中亚首站瞄准乌兹别克斯坦消费潜力
香菜9527
人工智能业界资讯经验分享
从注册到落地:Temu中亚首站瞄准乌兹别克斯坦消费潜力近年来,全球跨境电商市场格局加速演变,中国跨境电商平台正积极拓展海外市场。继在北美、欧洲、澳大利亚等地区取得显著成绩后,拼多多旗下跨境电商平台Temu正式开启中亚市场布局。乌兹别克斯坦成为Temu在中亚的首个重点市场,标志着其全球扩张战略进入新的阶段。乌兹别克斯坦市场潜力与政策环境乌兹别克斯坦作为中亚人口最多的国家(约3500万人),近年来消费
- 芯片的未来发展趋势
iccnewer
2024年,该行业将专注于AI/ML、RISC-V、量子、安全等发展趋势。今年年初,大多数人从未听说过生成式人工智能。现在整个世界都在竞相利用它,而这仅仅是个开始。量子计算、6G、智能基础设施等新市场领域专用处理正在加速对更快、更高效、更多数据的需求。与每隔几年等待下一个工艺节点的日子相比,未来几年的事件将与电话或汽车的引入一样重要。但可能不会只有一种创新技术,将会有很多技术一起以一种将让科技界惊
- 多阶段构建实现 Docker 加速与体积减小:含文件查看、上传及拷贝功能的 FastAPI 应用镜像构建
九不多
DockerdockerfastapipythonYOLO
本文围绕使用Docker构建FastAPI应用镜像展开,着重介绍了多阶段构建的Dockerfile编写及相关操作。借助多阶段构建,不仅实现了Docker构建的加速,还有效减小了镜像体积。1.Dockerfile内容以下是我们要使用的Dockerfile内容:#第一个阶段-构建应用FROMdocker.1ms.run/python:3.9ASbuilder#设置工作目录WORKDIR/app#复制依
- 一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.2.1GPU加速3.2.2ASIC加速3.2.3FPGA加速3.3算法优缺点GPUASICFPGA3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过
- 比特币全节点同步加速记录(使用Bitcoin Core钱包)
wusimpl
区块链区块链全节点同步加速bitcoincore
1.预先下载或从别的地方拷贝区块数据而不是直接在BitcoinCore钱包中下载这方面可以参考截止到2022年8月的区块数据2.将区块头数据和区块实体数据分开存储区块头数据放到SSD中,区块实体数据放到HDD中这方面可以参考BitcoinCore节点同步加速原理和方法实验-CodeAntenna3.使用代理下载剩余的数据最好用全局代理,并且在bitcoin.conf中配置proxy可添加离自己区域
- 解析大模型归一化:提升训练稳定性和性能的关键技术
秋声studio
口语化解析深度学习人工智能大模型归一化
引言在深度学习领域,特别是在处理大型神经网络模型时,归一化(Normalization)是一项至关重要的技术。它可以提高模型的训练稳定性和性能,在加速收敛方面发挥了重要作用。本文将深入探讨大模型归一化的原理、常见方法及其应用场景,并结合实际案例和代码示例进行说明。一、归一化的作用与理论基础归一化的主要目的是为了提高模型的训练稳定性和性能。具体来说,归一化有以下几个关键作用:提高训练稳定性:在神经网
- 阿里云全球节点:技术无国界,开发者如何借力数字新基建
AWS官方合作商
阿里云云计算服务器
在全球化进程加速的今天,开发者与企业的技术需求早已跨越地理边界。无论是跨境电商的数据同步、游戏出海的低延迟保障,还是跨国团队的高效协作,服务器的地理位置与稳定性直接决定了业务的成败。阿里云作为国内最早布局全球化基础设施的云服务商之一,其海外服务器的核心价值并非简单的“资源覆盖”,而是通过技术架构与本地化服务,为开发者构建了一张无缝连接的“数字高速公路”。一、全球化的本质:不止于服务器,而是技术普惠
- 简站WordPress主题:简洁、实用、无插件、更安全
podoor
wordpress模板WordPress技术wordpress
在众多的WordPress主题中,简站WordPress主题以其简洁、实用、无插件和更安全的特性脱颖而出,成为众多网站开发者和用户的首选。本文将对简站WordPress主题进行详细介绍,帮助您更好地了解这款优秀的主题。一、简洁的设计简站WordPress主题采用扁平化设计风格,简洁明了的界面让人耳目一新。主题色调搭配得当,既能保证内容的可读性,又能给人一种清爽的感觉。此外,简站主题还提供了多种布局
- 《破局项目延期魔咒:构建全周期风险防控体系》
玩转数据库管理工具FOR DBLENS
数据库甘特图项目管理数据库开发大数据
在数字化转型加速的今天,某权威机构调研数据显示:72%的IT项目存在延期交付问题,其中38%的项目实际周期超出计划50%以上。项目延期不仅造成资源浪费,更可能引发客户信任危机。当项目计划屡屡失控、风险频发时,管理者需要以系统化思维重构项目管理体系。一、项目延期的根源解构需求蔓延综合症某智能工厂项目在实施阶段新增327项需求变更,导致交付周期延长11个月隐性需求显性化过程中的认知偏差,形成"需求黑洞
- 大规异构集群 混合并行分布式训练系统,解决算力不均衡问题 HETHUB
爱串门的小马驹
万卡大规模集群大模型训练异构集群大规模集群分布式大模型训练
视频教程在这:3.2大规模异构集群,混合并行分布式系统,解释算力不均衡问题HETHUB_哔哩哔哩_bilibili一、大规模异构集群出现的原因:同一种GPU数量有限难以构建大规模集群:训练大规模模型依赖于大量的计算资源。例如,训练GPT-4模型(1.8万亿个参数)需要25000个A100GPU。用一种GPU加速器构建大规模集群是一个挑战。使用多种类型的GPU加速器构建大规模集群是解决同构GPU加速
- 国内高防加速CDN内容分发服务详细接入教程
网友阿贵
网站运维web安全安全性测试安全威胁分析
CDN功能与接入指南CDN(内容分发网络)是一种集安全防护和内容加速于一体的网络解决方案,适用于需要兼顾安全性和访问速度的业务场景。以下是其主要功能与接入步骤:核心功能:免费SSL证书:支持一键申请SSL证书,确保数据传输安全。Web攻击防护:集成WAF防火墙,防御SQL注入、XSS等常见攻击。CC攻击防御:智能识别并拦截恶意请求,保护网站稳定运行。BOT机器人分析:自动识别并管理机器人流量,优化
- CSS动画:性能优化指南
双囍菜菜
前端随记css性能优化前端
CSS动画性能优化指南关键词:重排重绘、硬件加速、合成层、性能分析文章目录CSS动画性能优化指南一、浏览器渲染机制:理解性能瓶颈根源1.1像素管道(PixelPipeline)全流程1.2各阶段性能损耗对比二、性能分析实战:ChromeDevTools深度使用2.1性能问题定位四步法2.2关键指标解读三、六大核心优化策略3.1硬件加速的正确打开方式3.2避免布局颠簸(LayoutThrashing
- 装配式建筑4.0:城市发展的绿色引擎与智能未来
资讯新鲜事
大数据人工智能
在城市化进程不断加速的今天,传统建筑业面临着效率低下、资源浪费、环境污染等多重挑战。装配式建筑4.0的出现,为城市可持续发展提供了革命性解决方案。这一建筑模式通过智能化、绿色化、数字化技术的深度融合,重构了建筑全生命周期的生产方式,成为推动城市高质量发展的核心动力。装配式建筑4.0通过工厂化预制和现场组装,大幅提高了建设效率,缩短了工期。相比传统建筑方式,装配式建筑4.0能够在工厂内完成大部分施工
- 如何加快制造业数字化转型
九河智造云
制造云计算
加速制造业数字化转型的五大战略支点制造业数字化转型已进入深水区。工信部数据显示,2025年我国规模以上工业企业数字化研发工具普及率达88%,但全流程数字化覆盖率不足35%。破解转型困局需要构建“政策引导-技术突破-场景落地-生态协同”的加速机制,通过五大核心战略实现质效突破。一、强化顶层设计:构建转型制度保障体系政策创新需突破三大瓶颈:专项资金引导:设立2000亿元制造业数字化专项基金,对智能工厂
- Docker国内设置镜像加速下载地址
黯然神伤888
dockerdocker
原先当我们配置好阿里云的镜像服务后,通过dockerpull拉取镜像很方便,但是随着阿里这方面的相关政策调整后,发现很多拉取镜像都出现了问题,无法正常拉取,自己构建镜像又嫌烦。正好在简书上看到有个老铁发了其他docker加速地址,试了下挺管用,就转载保存下分享给大家,如果使用阿里云镜像服务无法拉起镜像的话,可以试试下面的镜像地址1、目的国内的镜像很容易被屏蔽,导致dockerpull失败,需要手动
- 大数据学习(75)-大数据组件总结
viperrrrrrr
大数据impalayarnhdfshiveCDHmapreduce
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦一、CDHCDH(ClouderaDistributionIncludingApacheHadoop)是由Cloudera公司提供的一个集成了ApacheHadoop以及相关生态系统的发行版本。CDH是一个大数据平台,简化和加速了大数据处理分析的部署和管理。CDH提供Hadoop的
- 解析稳定率达99.99%!合合信息“大模型加速器2.0”助力AI打破“幻觉”
算法大数据人工智能图表表格
随着大模型在社会应用中逐渐普及,人们在享受便利的同时,也面临着“AI幻觉”产生的风险。训练数据是影响大模型“认知能力”的关键要素,近期,上海合合信息科技股份有限公司(简称“合合信息”)TextIn“大模型加速器2.0”版本正式上线,基于领先的智能文档处理技术,对复杂文档的版式、布局和元素进行精准解析及结构化处理,从数据源头降低大模型“幻觉”风险,让大模型在与人类的沟通中“更靠谱”。“大模型加速器2
- “大国品牌”建设全面启动,工业电商生态加速成型
人工智能
3月17日,AMT企源与中国工业互联网研究院(简称“工联院”)于北京、上海两地同步举行“大国品牌”电商平台项目启动仪式。工联院相关领导和负责人,AMT企源团队负责人、项目经理和项目骨干,共同出席本次启动仪式。工联院成立于2018年,是工业和信息化部直属的科研机构,承担工业互联网相关的发展战略、规划、政策、标准研究,网络、平台、安全体系建设,国际交流与合作等工作。为落实品牌强国战略,加速优质品牌的培
- Docker 镜像优化:如何避免重复安装软件,加速服务的构建与部署
花千树-010
Dockerdocker容器运维
在日常开发中,我们经常遇到这样的问题:由于服务需要额外安装大量软件(如JDK、vim、curl、git等),导致Docker镜像构建时间过长,并且每次构建都需要重复安装这些依赖。今天,我们将探讨几种优化方案,通过构建中间层镜像和使用多阶段构建,从而显著提高构建和部署效率。问题分析当你在Dockerfile中直接使用aptinstall安装依赖时,通常会面临以下问题:重复安装导致构建缓慢每次构建镜像
- 如何提升 API 性能:来自 Java 和测试开发者的优化建议
你正在听你最喜欢的歌曲,测试你使用编写的新API。但等你听完一整首歌,API还没响应。哎呀!这是一个巨大的警告信号——是时候优化你的API响应时间了。让我们深入了解一些加速方法,让你的API跟你最喜欢的吉他独奏一样快。为什么API响应时间很重要想想看:API响应时间就是你的应用程序与服务器之间的对话速度。它响应得越快,用户就会越开心。API慢=用户沮丧,API快=用户高兴。所以,让我们解决那些延迟
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比