- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- 【大模型实战篇】大模型周边NLP技术回顾及预训练模型数据预处理过程解析(预告)
源泉的小广场
大模型自然语言处理人工智能大模型LLM预训练模型数据预处理高质量数据
1.背景介绍进入到大模型时代,似乎宣告了与过去自然语言处理技术的结束,但其实这两者并不矛盾。大模型时代,原有的自然语言处理技术,依然可以在大模型的诸多场景中应用,特别是对数据的预处理阶段。本篇主要关注TextCNN、FastText和Word2Vec等低成本的自然语言处理技术,如何在大模型时代发挥其余热。今天先抛出这个主题预告,接下来会花些时间,逐步细化分析这些周边技术的算法原理、数学分析以及大模
- 自然语言处理系列五十一》文本分类算法》Python快速文本分类器FastText
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据自然语言处理分类pythonchatgpt人工智能ai机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理FastText和Word2vec的区别FastText代码实战总结自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理自然语言处理(N
- 每天一个数据分析题(五百二十)- 词嵌入模型
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
关于词嵌入模型,以下说法错误的是?A.GloVe模型属于词嵌入模型B.Word2Vec模型属于词嵌入模型C.词袋模型属于词嵌入模型D.词嵌入模型基本假设是出现在相似的上下文中的词含义相似数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于CDA模拟题库点击此处获取答案
- CnOpenData公共数据专区上新 | 中文金融情感词典
CnOpenData
数据列表深度学习python自然语言处理
中文金融情感词典一、数据简介 姜富伟教授及其研究团队于2021年第4期《经济学(季刊)》发表了《媒体文本情绪与股票回报预测》,并在文中介绍了一项极富创造力的金融学科研究成果——中文金融情感词典。 “本文在LoughranandMacDonald(2011)词典的基础上通过人工筛选和word2vec算法扩充,构建了一个更新更全面的中文金融情感词典。我们使用该情感词典计算我国财经媒体文本情绪指标,
- 23 注意力机制—BERT
Unknown To Known
动手学习深度学习bert人工智能深度学习
目录BERT预训练NLP里的迁移学习BERTBERT动机BERT预训练NLP里的迁移学习在计算机视觉中比较流行,将ImageNet或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测使用预训练好的模型(例如word2vec或语言模型)来抽取词、句子的特征做迁移学习的时候,一般不更新预训练好的模型在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息使用预训
- 基于seq2seq的SKchat语言模型
eric-sjq
语言模型人工智能自然语言处理
SKchat语言模型是由小思框架开放的中文语言模型,基于seq2seq以及word2vec。v3模型的对话功能界面~在代码方面,我们优化了seq2seq算法,降低了内存的占用,并构建了新的模型。whileTrue:model.fit([x_encoder,x_decoder],y,batchsize,1,verbose=1,)"""解码模型"""decoder_h_input=Input(shap
- 【自然语言处理】:实验1布置,Word2Vec&TranE的实现
X.AI666
自然语言处理人工智能机器学习自然语言处理
清华大学驭风计划因为篇幅原因实验答案分开上传,答案链接http://t.csdnimg.cn/5cyMG如果需要详细的实验报告或者代码可以私聊博主有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~实验1:Word2Vec&TranE的实现案例简介Word2Vec是词嵌入的经典模型,它通过词之间的上下文信息来建模词的相似度。TransE是知识表示学习领域的经典模型,它借鉴了Word2Ve
- Task5 基于深度学习的文本分类2
listentorain_W
Task5基于深度学习的文本分类2在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的。在本章我们将继续深入。基于深度学习的文本分类本章将继续学习基于深度学习的文本分类。学习目标学习Word2Vec的使用和基础原理学习使用TextCNN、TextRNN进行文本表示学习使用HAN网络结构完成文本分类文本表示方法Part3词向量本节通过word2vec学习
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- 使用Word Embedding+Keras进行自然语言处理NLP
取名真难.
机器学习keraspython深度学习神经网络人工智能自然语言处理
目录介绍:one-hot:pad_sequences:建模:介绍:WordEmbedding是一种将单词表示为低维稠密向量的技术。它通过学习单词在文本中的上下文关系,将其映射到一个连续的向量空间中。在这个向量空间中,相似的单词在空间中的距离也比较接近,具有相似含义的单词在空间中的方向也比较一致。WordEmbedding可以通过各种方法来实现,包括基于统计的方法(如Word2Vec和GloVe)和
- 知识图谱与语言预训练:深度融合的智能问答时代
cooldream2009
AI技术NLP知识知识图谱知识图谱人工智能预训练
目录前言1直接使用预训练模型vs.知识图谱与预训练相结合1.1直接使用预训练模型1.2构建知识图谱后与预训练相结合2预训练语言模型的发展历程2.1Word2Vec和GloVe2.2ELMo2.3BERT3知识图谱对预训练的助力3.1弥补低频实体信息的不足3.2提供领域知识的支持4典型知识驱动的语言预训练模型4.1ERNIE4.2KnowBERT4.3WKLM4.4K-Adapter结语前言在自然语
- word2vec工具学习笔记
适说心语
今天是第一次听说这个工具,本来是为了解决非目标客户的问题,但是要从头了解这个内容,所以边找资料边记录一下!一、简介Word2vec,是为一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示
- 图解word2vec,入门自然语言处理必看
学术Fun
(关注'AI新视野'公众号,发送‘资料’二字,免费获取50G人工智能视频教程!)图解word2vec精翻版,加入了自己的理解,和稍微有点出入,http://jalammar.github.io/illustrated-word2vec/image词嵌入(embedding)是机器学习中最惊人的创造,如果你有使用过Siri、GoogleAssistant、Alexa、Google翻译,输入法打字预测
- Tensorflow 实现 Word2Vec
王小鸟_wpcool
今天学习了一下《Tensorflow实战》这本书中第7章内容,利用tensorflow实现word2vec。其实书中内容就是Tensorflow教程中的例子,现在挣钱真容易。附链接https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/examples/tutorials/word2vec/word2vec_basic.py代码
- 自然语言处理N天-Day0503句向量模型 Doc2Vec
我的昵称违规了
新建MicrosoftPowerPoint演示文稿(2).jpg说明:本文依据《中文自然语言处理入门实战》完成。目前网上有不少转载的课程,我是从GitChat上购买。第五课句向量模型Doc2VecDoc2VecDoc2Vec模型是在Word2Vec模型上提出的计算长文本向量的工具。Doc2vec接收一个由LabeledSentence对象组成的迭代器作为其构造函数的输入参数。其中,LabeledS
- 揭秘Word2Vec:探索语言的魔法世界
洞深视界
word2veceasyui人工智能机器学习深度学习git自然语言处理
欢迎来到Word2Vec的世界!在自然语言处理的舞台上,Word2Vec犹如一位神秘的魔术师,带领我们探索语言的魔法世界。今天,让我们一同踏上这段充满惊喜的旅程,揭秘Word2Vec的神秘面纱。背景:语言的奥秘语言是人类沟通交流的重要工具,但其中隐藏着许多奥秘。在过去,计算机很难理解和处理语言,直到Word2Vec的出现,才让计算机开始懂得了语言的奥秘。Word2Vec的基本原理Word2Vec是
- gensim模型(1)——Word2Vec
qqqh777
Word2Vec模型介绍Gensim的Word2Vec模型且展示其在LeeEvaluationCorpus上的用法。importlogginglogging.basicConfig(format='%(asctims)s:%(levelname)s:%(message)s',level=logging.INFO)如果你错过了提示,Word2Vec是基于神经网络的广泛使用的算法,通常被称为"深度学习
- 刘知远LLM——神经网络基础
李日音
神经网络人工智能深度学习
文章目录神经网络基础基本构成如何训练?Word2Vec例子负采样:循环神经网络RNN门控计算单元GRU长短时记忆网络LSTM遗忘门输入门输出门双向RNN卷积神经网络CNNpytorch实战神经网络基础基本构成全称:人工神经网络。启发于生物神经细胞单个神经元单层神经网络前向计算激活函数的作用:没有激活函数的话,多层神经网络就会退化为单层输出层线性输出:回归问题sigmoid:二分类softmax:多
- Gensim详细介绍和使用:一个Python文本建模库
Bigcrab__
Python库介绍和使用python
Gensim=“GenerateSimilar”一、安装二、文本预处理2.1中文语料处理2.2英文语料处理2.3BOW语料建立三、模型使用3.1word2vecThealgorithmsinGensim,suchasWord2Vec,FastText,LatentSemanticIndexing(LSI,LSA,LsiModel),LatentDirichletAllocation(LDA,Lda
- 【爬虫实战】python文本分析库——Gensim
认真写程序的强哥
爬虫pythonPython爬虫Python学习Python文本分析Gensim开发语言
文章目录01、引言02、主题分析以及文本相似性分析03、关键词提取04、Word2Vec嵌入(词嵌入WordEmbeddings)05、FastText嵌入(子词嵌入SubwordEmbeddings)06、文档向量化01、引言Gensim是一个用于自然语言处理和文本分析的Python库,提供了许多强大的功能,包括文档的相似度计算、关键词提取和文档的主题分析,要开始使用Gensim,您需要安装它,
- 探索NLP中的N-grams:理解,应用与优化
冷冻工厂
程序人生
简介n-gram[1]是文本文档中n个连续项目的集合,其中可能包括单词、数字、符号和标点符号。N-gram模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。N-gram建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。n-gram的替代方法是词嵌入技术,例如word2vec。N-grams广泛用于文本挖掘和自然语言处理任务。示例通过计算每个唯一的n元语
- 智慧海洋建设-Task3 特征工程
1598903c9dd7
关于本次智慧海洋特征构建分为时间类特征、分箱特征(x、y、v)、DataFrame特征(计数特征和偏移量特征)、统计特征(聚合)、embedding特征(word2vec、NMF)这几方面进行考虑的。分箱特征的重要性:一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。离散特征的增加和减少都很容易,易于模型的快速迭代;稀疏向量内积乘法运算速度快,计算结果
- Vision Transformer及其变体(自用)
ST-Naive
transformer深度学习人工智能
0回顾Transformer0.1encoder在正式开始ViT之前,先来复习一遍transformer的核心机制相关的文章有很多,我选了一遍最通俗易懂的放在这:Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT所谓注意力机制,就是Attention=∑similarity(Query,Key)*Value,Q可以理解为单词在当前的表示,K为单词的标签,V
- 学习知识记录
想努力的人
面试算法cnn深度学习tensorflow
1、nnlm神经网络语言模型:ANeuralProbabilisticLanguageModel------阅读笔记_hx14301009的博客-CSDN博客2、Word2vec的skipgram模型输入是中心词和背景词NLP之---word2vec算法skip-gram原理详解_Ricky-CSDN博客_skipgram层级的softmax:本质是将N分类问题转换成logN(底数为2)次的二分类
- NLP_词的向量表示Word2Vec 和 Embedding
you_are_my_sunshine*
NLP自然语言处理word2vecembedding
文章目录词向量Word2Vec:CBOW模型和Skip-Gram模型通过nn.Embedding来实现词嵌入Word2Vec小结词向量下面这张图就形象地呈现了词向量的内涵:把词转化为向量,从而捕捉词与词之间的语义和句法关系,使得具有相似含义或相关性的词语在向量空间中距离较近。我们把语料库中的词和某些上下文信息,都“嵌入”了向量表示中。将词映射到向量空间时,会将这个词和它周围的一些词语一起学习,这就
- 利用Bert模型进行命名实体识别
刘单纯
之前两天也写了word2vec和Transformer,其实都是在为今天的内容做铺垫。最近正好使用bert做了命名实体识别项目,借这个契机分享出来,希望能帮到有需要的人。自然语言的表示之所以之前自然语言处理的发展没有达到CV领域,很大一部分原因是很难把抽象的语言用准确的数学方式表示。one-hot只能说对词进行编码,毫无“相似度”的概念,例如【川老师】和【特朗普】的距离与【川老师】和【苍老师】的距
- 【NLP】 Word2Vec模型 & Doc2Vec模型
Sonhhxg_柒
自然语言处理(NLP)自然语言处理word2vec机器学习
大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流个人主页-Sonhhxg_柒的博客_CSDN博客欢迎各位→点赞+收藏⭐️+留言系列专栏-机器学习【ML】自然语言处理【NLP】深度学习【DL】foreword✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。如果你对这个系列感兴趣的话,可以关注订阅哟Word
- 大模型|基础_word2vec
晓源Galois
word2vec人工智能自然语言处理
文章目录Word2Vec词袋模型CBOWContinuousBag-of-WordsContinuousSkip-Gram存在的问题解决方案其他技巧Word2Vec将词转化为向量后,会发现king和queen的差别与man和woman的差别是类似的,而在几何空间上,这样的差别将会以平行的关系进行表达。会使用滑动窗口的机制。滑动窗口内会有一个target目标词(上图蓝色部分),滑动窗口其他部分就是c
- 自然语言处理中的深度学习
qiufeng1ye
教材选用《动手学深度学习》,李沐等著;词嵌⼊(word2vec)⾃然语⾔是⼀套⽤来表达含义的复杂系统。把词映射为实数域向量的技术也叫词嵌⼊(wordembedding)。近年来,词嵌⼊已逐渐成为⾃然语⾔处理的基础知识。Word2vec⼯具包含了两个模型:跳字模型(skip-gram)和连续词袋模型(continuousbagofwords,简称CBOW)。跳字模型假设基于中⼼词来⽣成背景词,连续词
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo