- 一百道编程题|09 前序遍历
今儿敲了吗
算法数据结构
目录一、明确题目要求二、核心思路-递归与序列划分三、代码实现要点四、知识点二叉树的遍历方式递归算法一、明确题目要求题目给出一棵二叉树的中序与后序排列,要求求出它的先序排列。树结点用不同的大写字母表示,长度≤8。二、核心思路-递归与序列划分确定根节点:后序序列的最后一个元素是根节点。划分左右子树:以根节点为界,将中序序列划分为左右子树的中序序列。再根据中序序列的划分,在后序序列中找到对应的左右子树的
- python算法和数据结构刷题[3]:哈希表、滑动窗口、双指针、回溯算法、贪心算法
励志成为美貌才华为一体的女子
数据结构与算法算法数据结构散列表
回溯算法「所有可能的结果」,而不是「结果的个数」,一般情况下,我们就知道需要暴力搜索所有的可行解了,可以用「回溯法」。回溯算法关键在于:不合适就退回上一步。在回溯算法中,递归用于深入到所有可能的分支,而迭代(通常在递归函数内部的循环中体现)用于探索当前层级的所有可能选项。组合问题39.组合总和-力扣(LeetCode)给你一个无重复元素的整数数组candidates和一个目标整数target,找出
- C++游戏开发实战:从引擎架构到物理碰撞
一ge科研小菜鸡
编程语言C++c
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言C++是游戏开发中最受欢迎的编程语言之一,因其高性能、低延迟和强大的底层控制能力,被广泛用于游戏引擎、物理计算、图形渲染、AI逻辑等。本教程将带你从C++基础到高级游戏开发,包括游戏引擎架构、2D/3D渲染、物理碰撞、AI角色控制等,并通过一个简易2D物理引擎进行实战演练。2.C++游戏开发基础2.1游戏开发涉及的关键技术模块技术游戏引擎
- C++中的析构器(Destructor)(也称为析构函数)
张太行_
c++开发语言
在C++中,析构器(Destructor)也称为析构函数,它是一种特殊的成员函数,用于在对象销毁时进行资源清理工作。以下是关于C++析构器的详细介绍:析构函数的特点名称与类名相同,但前面有一个波浪号~:例如,如果类名为MyClass,那么析构函数的名称就是~MyClass。没有返回类型:和构造函数一样,析构函数也不声明返回类型,甚至连void也不允许。不接受任何参数:析构函数不能有参数,因此不能被
- 决策树ID3算法
小波LFZZB
算法决策树机器学习数据挖掘sklearn
决策树决策树概念决策树,一种基于规则的机器学习方法,主要用于分类和回归,常用作机器学习中的预测模型。树形结构图,树中每个节点表示某个对象,每个分叉路径代表的某个可能的属性值,每个叶结点对应从根节点到该叶节点所经历的路径所表示的对象的值。它通过递归地划分数据空间并在每个分区内拟合一个简单的预测模型来工作。选择分区是为了在每个细分中最大化目标变量的同质性。决策树特点1.树形结构决策树由根节点、内部节点
- 索引的底层数据结构、B+树的结构、为什么InnoDB使用B+树而不是B树呢
因特麦克斯
数据库
索引的底层数据结构MySQL中常用的是Hash索引和B+树索引Hash索引:基于哈希表实现的,查找速度非常快,但是由于哈希表的特性,不支持范围查找和排序,在MySQL中支持的哈希索引是自适应的,不能手动创建B+树的结构B+树是一种高效的多路平衡树,适合磁盘存储和范围查询。它的结构特点包括数据集中在叶子节点、叶子节点连接成链表、内部节点仅存储键值和指针。在数据库和文件系统中,B+树被广泛应用于索引和
- 华为OD2024机试最新E卷题库-(A+B+C+D+E)
蜗牛快快快快跑
华为od算法数据结构贪心算法排序算法动态规划
在这个精心策划的专栏中,我们聚焦于华为OD2024机试的最新E卷题库,涵盖JS、C、C++、Java与Python五大编程语言,旨在为挑战者提供全面而深入的备战资源。这里不仅有精选的实战题目,还有详尽的解题思路与代码实现,帮助你掌握核心算法,理解数据结构,提升编程技巧。以下是每个卷宗的详细,可以通过直接点击试卷链接查看练习试卷编号备注OD-E卷原题+个人代码+思路解析,95%以上的通过率,方便大家
- gesp(C++六级)(10)洛谷:P10722:[GESP202406 六级] 二叉树
王老师青少年编程
GESP(C++六级)真题题解c++深度优先开发语言csp信奥赛算法gesp
gesp(C++六级)(10)洛谷:P10722:[GESP202406六级]二叉树题目描述小杨有⼀棵包含nnn个节点的二叉树,且根节点的编号为111。这棵二叉树任意⼀个节点要么是白色,要么是黑色。之后小杨会对这棵二叉树进行qqq次操作,每次小杨会选择⼀个节点,将以这个节点为根的子树内所有节点的颜色反转,即黑色变成白色,白色变成黑色。小杨想知道qqq次操作全部完成之后每个节点的颜色。输入格式第⼀行
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
科研_G.E.M.
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- 【导航业务框架】autoware manager
盒子君~
#自动驾驶Autoware#架构自动驾驶人工智能
文章目录(1)从Autoware的系统层进行剖析(2)从系统组件框图进行剖析(3)从算法的基本控制和数据流进行剖析(4)从Autoware的节点图进行剖析【较有用】总结部署经验总结参考资料无人驾驶Autoware相关教程及博客请关注专栏:https://blog.csdn.net/qq_35635374/article/details/138165657无人车&无人机导航合集https://blo
- Mongo数据库简介
chqj_163
作者:[佚名]-发布:2010-11-1810:16:59-来源:无忧技术网转载http://www.liqwei.com/database/other/2010/778.shtmlMongo是一个高性能,开源,无模式的文档型数据库,它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。Mongo使用C++开发,提供了以下功能:◆面向集合的存储:适合存储对象及JSON形式的数据。◆动态查询:
- 【2024年华为OD机试】(A卷,100分)- 单向链表中间节点 (Java & JS & Python&C/C++)
妄北y
算法汇集笔记总结(保姆级)华为odjavajavascriptpythonc语言链表
一、问题描述题目描述求单向链表中间的节点值,如果奇数个节点取中间,偶数个取偏右边的那个值。输入描述第一行链表头节点地址后续输入的节点数n后续输入每行表示一个节点,格式节点地址节点值下一个节点地址(-1表示空指针)输入保证链表不会出现环,并且可能存在一些节点不属于链表。输出描述单向链表中间的节点值用例输入000104000003-1000105123091145160000012309711451输
- No.7十六届蓝桥杯备战|单目操作符|getchar|putchar(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯c++职场和发展
单⽬操作符前⾯介绍的操作符都是双⽬操作符,即有2个操作数。除此之外还有⼀些操作符只有⼀个操作数,被称为单⽬操作符。如++、–、+(正)、-(负)就是单⽬操作符。++和–++是⼀种⾃增的操作符,⼜分为前置++和后置++,–是⼀种⾃减的操作符,也分为前置–和后置–前置++或者后置++,都是让操作数⾃增1的前置–或者后置–,都是让操作数⾃减1的前置++和后置++//案例1intx=10;inta=++x
- DiffuEraser: 一种基于扩散模型的视频修复技术
扫地僧985
音视频
视频修复算法结合了基于流的像素传播与基于Transformer的生成方法,利用光流信息和相邻帧的信息来恢复纹理和对象,同时通过视觉Transformer完成被遮挡区域的修复。然而,这些方法在处理大范围遮挡时常常会遇到模糊和时序不一致的问题,这凸显了增强生成能力模型的重要性。近期,由于扩散模型在图像和视频生成方面展现出了卓越的性能,已成为一种重要的技术。在本文中,我们介绍了DiffuEraser,这
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- C# delegate 委托使用教程
c#.net
什么是委托?委托是定义方法签名的引用类型数据类型,可以定义委托的变量,就像其他数据类型一样,可以引用与委托具有相同签名的任何方法。它允许方法作为参数传递,并允许事件驱动编程。它们提供了一种以类型安全的方式封装方法引用的方法。委托是一种类型,类似于C++的函数指针,但更安全和灵活。委托可以存储对方法的引用(或者多个方法)。委托是实现事件和回调的基础。为什么使用委托?类型安全:委托提供一种类型安全的方
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- 《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
c++c#
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means聚类算法,作为数据聚类领域的经典之作,以其简洁高效的特性而备受瞩目。当我们将目光聚焦于C++这一强大而高效的编程语言时,会发现它与K-Means聚类算法的结合犹如天作之合,能够为数据处理与
- 《数据可视化新高度:Graphy的AI协作变革》
程序猿阿伟
信息可视化人工智能数据分析
在数据洪流奔涌的时代,企业面临的挑战不再仅仅是数据的收集,更在于如何高效地将数据转化为洞察,助力决策。Graphy作为一款前沿的数据可视化工具,凭借AI赋能的团队协作功能,为企业打开了数据协作新局面,重新定义了团队在数据领域的协同方式。智能角色分配,适配专长促协作Graphy利用AI算法,根据团队成员过往在数据项目中的表现、技能标签以及参与任务的类型,分析出每个成员在数据可视化流程中的优势。比如,
- Scikit-Learn K均值聚类
对许
#Python#人工智能与机器学习scikit-learn聚类机器学习
Scikit-LearnK均值聚类1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-LearnK均值聚类2.1、Scikit-LearnK均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:1.1、K均值
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 数据挖掘常用算法优缺点分析
天波烟客00
数据挖掘数据挖掘机器学习
领取机器学习视频教程:http://www.admin444.com/P-c8129a48常用的机器学习、数据挖掘方法有分类,回归,聚类,推荐,图像识别等。在实际应用中,一般都是采用启发式学习方式来实验。偏差&方差偏差:描述的是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差bias其实是模型太简单而带来的估计不准确的部分---欠拟合方差:描述的是预测值的变化范围、离散程度
- Redis基础命令之set、zset
泪染的青空
redis数据库缓存
1.SetRedis的Set是String类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。1.1SADD--添加一个或多个成员这里添加三个成员到set集合中127.0.0.1:6379>SADDsetmysqljavac++(integer)31.2SMEMBERS--查看成员127.0.0.1:6379>SMEMBERSset1)"c++"2)"java"3)"mysql"
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 数据结构:时间复杂度和空间复杂度
星迹日
数据结构数据结构时间空间复杂度算法
我们知道代码和代码之间算法的不同,一定影响了代码的执行效率,那么我们该如何评判算法的好坏呢?这就涉及到了我们算法效率的分析了。一、算法效率所谓算法效率的分析分为两种:第一种时间效率,又称时间复杂度。第二种空间效率,又称空间复杂度。其中,时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。二、时间复杂度1、概念算法的时间复杂度其实是一个数学函数,它描述了该算法的运
- 数据结构——时间复杂度
Lamar Carpenter
数据结构计算机408考研数据结构
前言当你拿到一段代码时,你该如何判断这一段代码算法的好坏程度?有的人会说跑一下(运行一下),事后统计运行时间。当然这样确实能够直观的通过看运行程序所花费时间,但是这存在着一些问题:和机器性能有关超级计算机vs单片机(同样的一段代码一定是超级计算机运行的时间更快)和编程语言有关越高级的语言运行的效率越低编译程序产生的机器指令质量有关有些算法不能事后统计导弹控制算法(不能为了统计算法的效率发射一颗导弹
- 【中科院1区】Matlab实现黏菌优化算法SMA-RF锂电池健康状态估计算法研究
matlab科研助手
matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍摘要锂离子电池作为一种重要的储能器件,在电动汽车、便携式电子设备等领域发挥着至关重要的
- JCR一区级 | Matlab实现蜣螂算法DBO-Transformer-LSTM多变量回归预测
Matlab机器学习之心
算法matlabtransformer
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:水质预测对于环境保护和资源管理至关重要。本文提出了一种基于蜣螂算法(DungBeetleOptimizer,DBO)、DBO-Transformer和LSTM的多变量水质回归预测模型,旨在提高水质参数
- 基于Lagrange-Newton法的SQP局部算法python实现
笛在月明
算法Pythonpython算法优化
序列二次规划(SQP)是解决约束优化问题中较好的一种算法,其流程为在实现算法的过程中,使用了scipy.optimize模块:scipy.optimize.minimize(fun,x0,args=(),method=None,jac=None,hess=None,hessp=None,bounds=None,constraints=(),tol=None,callback=None,option
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">