- 目标检测的超级英雄:YOLO带你识别世界
星际编程喵
Python探索之旅目标检测YOLO目标跟踪人工智能计算机视觉python
前言YOLO(YouOnlyLookOnce)是计算机视觉领域一颗璀璨的明星,它以高效、快速著称,成为目标检测算法的代表。今天,我们一起走进YOLO的世界,看看它如何神奇地识别图像中的物体。当然,不用担心,这篇文章会让你轻松理解,并且我会用幽默、通俗的语言给大家展示这项技术。相信我,看完之后,你会觉得YOLO不仅是个算法,更像是个看得懂、说得清的技术伙伴。简介YOLO不仅是一个简单的目标检测模型,
- 打架检测系统:基于YOLOv5的实时人群打架行为识别
2025年数学建模美赛
YOLO深度学习ui计算机视觉视觉检测
1.引言打架检测,作为一个复杂且具有挑战性的任务,已经在多个领域展现出其巨大的应用潜力,尤其是在公共安全监控、安防摄像头、智能城市等应用场景中。通过深度学习技术,尤其是基于YOLOv5的目标检测,我们能够对实时视频流中的人群行为进行实时监控,并有效地检测和识别人群中的打架行为。本博客将详细介绍如何使用YOLOv5模型搭建一个打架检测系统,包含数据集准备、YOLOv5训练、UI界面设计以及优化和部署
- 夜晚场景下的人车检测数据集VOC+YOLO格式4199张6类别
FL1623863129
数据集深度学习机器学习人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):4199标注数量(xml文件个数):4199标注数量(txt文件个数):4199标注类别数:6标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["bus","car
- 网球比赛检测数据集VOC+YOLO格式6648张5类别
FL1623863129
数据集深度学习机器学习人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):6648标注数量(xml文件个数):6648标注数量(txt文件个数):6648标注类别数:5标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["ball","ba
- 2025年最新在线模型转换工具优化模型ncnn,mnn,tengine,onnx
我的青春不太冷
mnn人工智能深度学习ncnn在线模型转换网址
文章目录引言最新网址地点一、模型转换1.框架转换全景图2.安全的模型转换3.网站全景图二、转换说明三、模型转换流程图四、感谢引言在yolov5,yolov8,yolov11等等模型转换的领域中,时间成本常常是开发者头疼的问题。最近发现一个超棒的网站工具,简直是模型转换的神器。它最大的亮点就是省去编译转换工具的时间,开箱即用,一键转换。对于目标格式,提供了tengine、ncnn、mnn、onnx等
- 500多种目标检测数据集下载地址汇总(YOLO、VOC)
2401_85863780
目标检测YOLO目标跟踪数据集yolo
名称辣椒病害分类数据集9076张12类别.7z【目标检测数据集】光伏电池异常检测数据集VOC+YOLO格式219张2类别_2.zip【目标检测数据集】钢丝绳破损灼伤缺陷检测数据集VOC+YOLO格式1318张2类别.7z【目标检测数据集】狗狗数据集5912张VOC+YOLO格式.zip【目标检测数据集】工地安全帽佩戴检测4000张VOC+YOLO格式.rar【目标检测数据集】手势识别0-9数字VO
- 水稻和杂草检测数据集VOC+YOLO格式1356张2类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1356标注数量(xml文件个数):1356标注数量(txt文件个数):1356标注类别数:2标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["crop","we
- openvino yolov11识别
yuyuyue249
openvinoYOLOpython
importcv2importpathlibfromultralyticsimportYOLOimportmatplotlib.pyplotaspltimportopenvinoasovcore=ov.Core()det_model_path=pathlib.Path("/home/yuyue/yolov11/weights/yolo11n/yolo11n.xml")det_ov_model=co
- yolov5--hsv增强,hyp超参数,
yuyuyue249
YOLO计算机视觉机器学习
一.hyp超参数:文件位置:data/hyps/hyp.scratch-low.yaml具体如下:lr0:0.01#initiallearningrate(SGD=1E-2,Adam=1E-3)lrf:0.01#finalOneCycleLRlearningrate(lr0*lrf)momentum:0.937#SGDmomentum/Adambeta1weight_decay:0.0005#op
- yolo是什么,有什么优缺点以及YOLO的应用场景?
cesske
YOLO
目录前言一、yolo是什么?二、YOLO的优点三、YOLO的缺点四、YOLO的应用场景总结前言这里我们来讲一下yolo是什么,有什么优缺点?一、yolo是什么?“YOLO”在计算机视觉和深度学习领域是一个特定的算法框架,全称是“YouOnlyLookOnce”。这个算法最初由JosephRedmon、SantoshDivvala、RossGirshick和AliFarhadi在2015年提出,旨在
- YOLOv10改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
Limiiiing
YOLOv10改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用GOLD-YOLO中的颈部结构优化YOLOv10的网络模型。GOLD-YOLO颈部结构中的GD机制借鉴了全局信息融合的理念,通过独特的模块设计,在不显著增加延迟的情况下,高效融合不同层级的特征信息。将其应用于YOLOv10的改进过程中,能够使模型更有效地整合多尺度特征,减少信息损失,强化对不同大小目标物体的特征表达,从而提升模型在复杂场景下对目标物体的检测精度与定位准确性。
- YOLOv10改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
Limiiiing
YOLOv10改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文将HS-FPN结构融入YOLOv10以优化目标检测网络模型。HS-FPN借助通道注意力机制及独特的多尺度融合策略,有效应对目标尺寸差异及特征稀缺问题。在YOLOv10中应用HS-FPN时,其利用高级特征筛选低级特征,增强特征表达,助力模型精准定位和识别目标,减少因尺度变化及特征不足导致的检测误差,显著提升YOLOv10在各项检测任务中的准确性与稳定性。专栏目录:YOLOv10改进目
- 基于 YOLOv8+PyQt5 的无人机红外目标检测系统:开启智能监测新时代
人工智能教学实践
人工智能YOLOqt无人机
基于YOLOv8+PyQt5的无人机红外目标检测系统:开启智能监测新时代【毕业与课程大作业参考】基于yolov8+pyqt5界面自适应的无人机红外目标检测系统demo.zip资源-CSDN文库在科技飞速发展的今天,无人机技术在各个领域的应用越来越广泛。为了提升无人机在复杂环境下的目标检测能力,结合先进的深度学习算法和图形用户界面开发技术,打造功能强大的无人机红外目标检测系统成为了研究热点。本文将详
- 【3D目标检测】YOLO3D 基于图像的3D目标检测算法
BILLY BILLY
YOLOv8系列3d目标检测YOLO
参考文档:https://ruhyadi.github.io/project/computer-vision/yolo3d/代码:https://github.com/ruhyadi/yolo3d-lightning本次分享将会从以下四个方面展开:物体检测模型中的算法选择单目摄像头下的物体检测神经网络训练预测参数的设计模型训练与距离测算1.物体检测模型中的算法选择物体检测(ObjectDetect
- 深度学习模型在汽车自动驾驶领域的应用
eso1983
深度学习汽车自动驾驶
汽车自动驾驶是一个高度复杂的系统,深度学习和计算技术在其中扮演核心角色。今天简单介绍一下自动驾驶领域常用的深度学习模型及其计算原理的解析。1.深度学习模型分类及应用场景1.1视觉感知模型CNN(卷积神经网络)应用:图像分类、物体检测(车辆、行人、交通标志)、语义分割(道路、车道线)。典型模型:YOLO:实时目标检测,低延迟特性适合自动驾驶。MaskR-CNN:结合检测与像素级分割,用于精确场景理解
- 室内家具检测数据集VOC+YOLO格式7928张10类别
FL1623863129
数据集深度学习机器学习人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):7928标注数量(xml文件个数):7928标注数量(txt文件个数):7928标注类别数:10标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Bed","Bo
- 【YOLO11改进 - Backbone主干】LSKNet:旋转目标检测新网络,通过DW卷积核和空间选择机制来动态调整目标的感受野
YOLO大师
目标检测网络人工智能yolov11YOLOpython计算机视觉
YOLOv11目标检测创新改进与实战案例专栏文章目录:YOLOv11创新改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv11目标检测创新改进与实战案例文章目录YOLOv11目标检测创新改进与实战案例专栏介绍摘要创新点文章链接基本原理**LSKNet的结构**3.2大核卷积3.3空间核选择核心代码YOLO11引入代码tasks注册步骤1
- YOLOv10改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含二次独家创新
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文记录的是利用大核选择模块LSK优化YOLOv10的目标检测网络模型。在大尺寸图像中的小目标检测任务中,一直是个难题,无法仅基于外观实现较好的识别,因此需要广泛的上下文信息进行辅助。但不同物体所需的上下文信息范围不同,为了更好地对这些特性进行建模,本文利用大核选择模块二次创新C3k2,使模型能够产生具有各种大感受野的多个特征的同时,动态地根据输入调整模型的行为,使网络更好地适应图像中
- YOLOv10改进,YOLOv10检测头融合DynamicHead,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能深度学习计算机视觉
摘要作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别×空间×通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自注意力机制的构建。然而,直接在所有维度上学习注意力函数过于困难,且计算成本过高。因此,作者提出通过分别在特征的每个特定维度上部署注意力机制,即在级
- 用engine引擎文件在Jetson上面进行推理(YOLOv8)
薇憨
深度学习-硬件篇YOLOpythonpycharm深度学习pytorch嵌入式硬件
1.pt文件,推理在Jetson上可以通过predict.py脚本用.pt权重文件进行推理脚本如下:importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#selectyourmodel.ptpathmodel.pred
- 通过TenSorRT转换后的engine引擎文件进行验证的脚本
薇憨
深度学习-硬件篇嵌入式硬件mcupython
YOLOv8算法验证pt文件的精度脚本一般都很常见,工程项目里面一般会有importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#权重文件路径model.val(data='/data.yaml',#yaml文件路径spl
- yolov8使用Python训练识别
枫林古月
YOLO从零开始YOLOpython开发语言
环境要求:根据《yolov8训练环境搭建》搭建好运行环境参考文献:1、yolo官方文档python版本:https://docs.ultralytics.com/usage/python/2、github文档https://github.com/ultralytics/ultralytics/blob/main/README.zh-CN.md3、标定源数据的生成使用labelImg来标定类别,输出
- YOLOv10-1.1部分代码阅读笔记-tasks.py
红色的山茶花
YOLO笔记深度学习
tasks.pyultralytics\nn\tasks.py目录tasks.py1.所需的库和模块2.classBaseModel(nn.Module):3.classDetectionModel(BaseModel):4.classOBBModel(DetectionModel):5.classSegmentationModel(DetectionModel):6.classPoseModel
- YOLOv10-1.1部分代码阅读笔记-checks.py
红色的山茶花
YOLO笔记深度学习
checks.pyultralytics\utils\checks.py目录checks.py1.所需的库和模块2.defparse_requirements(file_path=ROOT.parent/"requirements.txt",package=""):3.defparse_version(version="0.0.0")->tuple:4.defis_ascii(s)->bool:5
- YOLOv10-1.1部分代码阅读笔记-loss.py
红色的山茶花
YOLO笔记深度学习
loss.pyultralytics\utils\loss.py目录loss.py1.所需的库和模块2.classVarifocalLoss(nn.Module):3.classFocalLoss(nn.Module):4.classBboxLoss(nn.Module):5.classRotatedBboxLoss(BboxLoss):6.classKeypointLoss(nn.Module)
- YOLOv9-0.1部分代码阅读笔记-common.py
红色的山茶花
笔记
common.pymodels\common.py目录common.py1.所需的库和模块2.defautopad(k,p=None,d=1):3.classConv(nn.Module):4.classAConv(nn.Module):5.classADown(nn.Module):6.classRepConvN(nn.Module):7.classSP(nn.Module):8.classMP
- YOLOv7-0.1部分代码阅读笔记-common.py
红色的山茶花
YOLO笔记
common.pymodels\common.py目录common.py1.所需的库和模块2.defautopad(k,p=None):3.classMP(nn.Module):4.classSP(nn.Module):5.classReOrg(nn.Module):6.classConcat(nn.Module):7.classChuncat(nn.Module):8.classShortcut
- YOLOv8-ultralytics-8.2.103部分代码阅读笔记-block.py
红色的山茶花
YOLO笔记深度学习
block.pyultralytics\nn\modules\block.py目录block.py1.所需的库和模块2.classDFL(nn.Module):3.classProto(nn.Module):4.classHGStem(nn.Module):5.classHGBlock(nn.Module):6.classSPP(nn.Module):7.classSPPF(nn.Module):
- 基于深度学习的行人检测与识别系统:YOLOv5、YOLOv8、YOLOv10与UI界面的实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
引言行人检测与识别技术作为计算机视觉领域的一个重要应用,广泛应用于智能监控、自动驾驶、公共安全等多个领域。行人检测系统的目标是通过图像或视频中的内容,自动识别并定位行人,这项任务在复杂环境中面临着不同的挑战,如多样的行人姿态、遮挡、光照变化等。近年来,深度学习的进步,尤其是目标检测领域的快速发展,为行人检测提供了强有力的支持。YOLO(YouOnlyLookOnce)系列模型,作为目前目标检测领域
- 基于深度学习的行人检测识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
1.引言行人检测与识别是计算机视觉中的一个重要领域,广泛应用于安防监控、智能交通、自动驾驶等多个领域。传统的行人检测方法面临着许多挑战,如低光照、复杂背景、遮挡等问题。随着深度学习技术的迅猛发展,基于卷积神经网络(CNN)的方法,尤其是YOLO(YouOnlyLookOnce)系列算法,在行人检测中取得了显著的效果。YOLOv8作为YOLO系列的最新版本,继承了YOLO一贯的高效性和准确性,在速度
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam