当我们获得多因素的原始数据的时候,就会根据不同的因素来绘制多组一样的图片。一个一个画当然也行,不过很累,这里,我来使用ggplot2批量生成一个类型的图片,并将他们拼接在一起。
这是某次血常规的数据(经过了修改),将数据整理成下面这种形式:
分组情况如下:
library(rio)
library(ggplot2)
library(patchwork)
rawdata <- import(file = "exp.xlsx",sheet = 1,col_names = T,na = "0",col_type = "numeric") #从excel读取数据,并将空单元格和单元格值为0的数字变为NA
group <- import(file = "exp.xlsx",sheet = 2,col_names = T,na = "0")
rawdata <- merge(group,rawdata,by = "order") #按照order列合并,加入分组信息
rawdata
这里我们是想要每一列都做一个柱形图,因此可以写一个for循环,基本思路就是先把要做图的那一列变量和group列提取出来,然后对每一个变量计算各组的均值和标准差(均值就是柱子的高度,标准差是为了画出误差棒)。
需要先画一个图(本例就是先画出WBC,然后给出布局,例如这里要画14个图,我打算画四行,每行4个图,最后一行两个图):
data <- rawdata[,c(2,3)]
data <- na.omit(data) #删除NA值
frame <- data.frame() #使用循环计算出mean和sd
for (j in c(1:7)){
variable <- data[which(data$group == group[j,2]),]
mean <- mean(variable[,2])
sd <- sd(variable[,2])
frame <- rbind(frame,cbind(mean = mean,sd = sd,order = j,group = group[j,2]))}
frame$mean <- as.numeric(frame$mean)
frame$sd <- as.numeric(frame$sd)
p <- ggplot(frame,aes(x = reorder(group,order),y = mean))+
geom_errorbar(aes(ymin = mean-sd ,ymax = mean + sd),size = 1.2,width = 0.2,color = "gray")+
geom_bar(size = 1.2,color = "black",stat = "identity",width = 0.7,fill = rainbow(7),alpha = 0.6)+
geom_point(shape = 18,size = 6,color = rainbow(7),alpha = 0.6)+
labs(x = colnames(data)[2],y = paste("The organ coefficient of",colnames(data)[2]))+
coord_cartesian(xlim = c(0.5,7.5),ylim = c(0,max(frame$mean+frame$sd)*1.2),expand = F)+
geom_text(x = 4,y = max(frame$mean+frame$sd)*1.15,label = "One-way ANOVA: P > 0.05",size = 6)+
theme(panel.background = element_blank(),
panel.grid.major.y = element_line(colour = "grey",linetype = 2),
axis.line = element_line(colour = "black",size = rel(2),arrow = arrow(angle = 30,length = unit(0.1,"inches"))),
axis.title.y = element_text(size = rel(2),hjust = 0.5),
axis.title.x = element_text(size = rel(2),hjust = 0.5),
axis.text.x = element_text(size = rel(2),hjust = 1,angle = 45),
axis.text.y = element_text(hjust = 1,size = rel(2)),
axis.ticks = element_line(size = rel(1.3)),
plot.title = element_text(size = rel(1.8)),
plot.margin = margin(15,9,9,30))
graph_one <- p + plot_layout(nrow = 4,ncol = 4,tag_level = "new")+plot_annotation(tag_levels = "A")+theme(plot.tag = element_text(size = rel(2))) #这个函数就是给出整个图片的布局
下面用for循环,将剩下的变量(WBC后面的变量)按照和上面一样的操作进行绘图,并将他们拼在一起。
for (i in c(4:dim(rawdata)[2])){
data <- rawdata[,c(2,i)]
data <- na.omit(data)
frame <- data.frame()
for (j in c(1:7)){
variable <- data[which(data$group == group[j,2]),]
mean <- mean(variable[,2])
sd <- sd(variable[,2])
frame <- rbind(frame,cbind(mean = mean,sd = sd,order = j,group = group[j,2]))}
frame$mean <- as.numeric(frame$mean)
frame$sd <- as.numeric(frame$sd)
p <- ggplot(frame,aes(x = reorder(group,order),y = mean))+
geom_errorbar(aes(ymin = mean-sd ,ymax = mean + sd),size = 1.2,width = 0.2,color = "gray")+
geom_bar(size = 1.2,color = "black",stat = "identity",width = 0.7,fill = rainbow(7),alpha = 0.6)+
geom_point(shape = 18,size = 6,color = rainbow(7),alpha = 0.6)+
labs(x = colnames(data)[2],y = paste("The organ coefficient of",colnames(data)[2]))+
coord_cartesian(xlim = c(0.5,7.5),ylim = c(0,max(frame$mean+frame$sd)*1.2),expand = F)+
geom_text(x = 4,y = max(frame$mean+frame$sd)*1.15,label = "One-way ANOVA: P > 0.05",size = 6)+
theme(panel.background = element_blank(),
panel.grid.major.y = element_line(colour = "grey",linetype = 2),
axis.line = element_line(colour = "black",size = rel(2),arrow = arrow(angle = 30,length = unit(0.1,"inches"))),
axis.title.y = element_text(size = rel(2),hjust = 0.5),
axis.title.x = element_text(size = rel(2),hjust = 0.5),
axis.text.x = element_text(size = rel(2),hjust = 1,angle = 45),
axis.text.y = element_text(hjust = 1,size = rel(2)),
axis.ticks = element_line(size = rel(1.3)),
plot.title = element_text(size = rel(1.8)),
plot.margin = margin(15,9,9,30))
graph_one <- graph_one + p + plot_layout(nrow = 4,ncol = 4,tag_level = "new")+plot_annotation(tag_levels = "A")+theme(plot.tag = element_text(size = rel(2))) #和上面的写法有一点不一样
}
ggsave(graph_one,filename = "graph_one.tiff",width = 30,height = 22,dpi = 300,compression = "lzw") #将图片保存