- Apache Flink流处理框架
weixin_44594317
apacheflink大数据
ApacheFlink是一个分布式流处理框架和数据处理引擎,专注于以低延迟和高吞吐量处理无界和有界的数据流。它可以同时处理流式数据和批处理数据,并且提供强大的容错机制和状态管理功能。Flink常用于实时分析、复杂事件处理(CEP)、机器学习和批量数据处理等场景。1.Flink的核心概念在理解Flink的工作原理之前,先要了解它的一些核心概念:流处理(StreamProcessing):处理数据流中
- Apache Airflow 全面解析
由数入道
人工智能apacheAirflow
1.Airflow的定义与核心定位ApacheAirflow是一个开源的工作流自动化与调度平台,由Airbnb于2014年创建,2016年进入Apache孵化器,2019年成为顶级项目。其核心设计理念是“WorkflowsasCode”,通过编程方式定义、调度和监控复杂的数据流水线(Pipeline),适用于ETL、机器学习模型训练、数据湖管理、报表生成等场景。2.核心概念与架构解析2.1核心组件
- AI人工智能代理工作流AI Agent WorkFlow:面向服务计算中的代理工作流管理
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:面向服务计算中的代理工作流管理关键词:人工智能,代理工作流,服务计算,自动执行,智能调度,协同处理,流程管理1.背景介绍1.1问题的由来随着互联网和云计算的快速发展,服务计算作为一种分布式计算模式,已经成为企业信息化建设的重要方向。在服务计算中,工作流技术被广泛应用于业务流程的建模、执行和管理。然而,传统的基于BPM(业务流程管理)的工作流管理
- Spring AI 在微服务中的应用:支持分布式 AI 推理
drebander
AI编程springAI
1.引言在现代企业中,微服务架构已成为开发复杂系统的主流方式,而AI模型推理也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成SpringAI,使多个服务可以协同完成AI任务,并支持分布式AI推理,是企业面临的关键挑战。本篇文章将探讨:在微服务架构中如何部署SpringAI服务;如何通过分布式AI推理提高推理性能与扩展性;典型应用场景,如电商推荐、智能客服、实时分析等。2.Spri
- 【使用Apache Flink 实现滑动窗口流式计算】
我明天再来学Web渗透
后端技术总结apacheflinklinq开发语言
什么是Flink?ApacheFlink是一个用于分布式流式处理和批处理的开源实时计算引擎。它具备低延迟、高吞吐量和exactly-once语义的特点,适用于各种实时数据处理场景。Flink的核心概念作业(Job):Flink程序的执行单元。数据流(DataStream):表示连续的数据流,可以进行转换和计算。窗口(Window):用于对无限数据流进行有界的数据切片处理。状态(State):用于保
- 理解Ceph的三种存储方式(块设备、文件系统、对象存储)
118路司机
大数据
前言Ceph是一个开源的、统一的、分布式的存储系统这是我们宣传Ceph时常说的一句话,其中“统一”是说Ceph可以一套存储系统同时提供块设备存储、文件系统存储和对象存储三种存储功能。一听这句话,具有一定存储基础的用户应该已经大致了解了Ceph的存储接口,而没有存储基础的小白用户则一脸懵逼。本文旨在让小白用户理解Ceph的块存储、文件系统存储和对象存储接口。一.Ceph的块设备存储接口什么是块设备?
- 计算机网络之计算机网络协议、接口、服务等概念
DKPT
#计算机网络开发语言计算机网络笔记算法c语言
一、计算机网络协议定义:计算机网络协议是实现计算机网络中不同计算机系统之间的通信所必须遵守的通信规则的集合。这些规则规定了数据如何在网络中传递、处理的格式、同步问题等。要素:语法:数据与控制信息的结构或格式。语义:需要发出何种控制信息,完成何种动作以及做出何种响应。同步:事件实现顺序的详细说明。示例:TCP/IP协议:互联网上最常用的协议,它规定了如何在互联网上传递数据,包括IP协议(负责数据包的
- 区块链学习资料
sunchenzl
区块链学习资料
本文列举了关于区块链和数字加密技术的文章和资源,分为以下几个部分:构建区块和基础;基础(和历史);关键概念——包括特定课题(例如区块链治理);隐私和安全;扩展;共识算法、加密货币经济和投资;资金筹集和通证分布;去中心化交易所;稳定货币;加密货币经济原生产品(数字加密收藏品、管理市场、游戏)。最后,文章还提供了开发者教程、实践教程和人物事迹,以及其他资源,例如时事新闻和课程。干货满满哦!1、构建区块
- HarmonyOS“一次开发,多端部署”
邮专小谦
harmonyos华为
目录一、核心概念与目标二、开发基础问题与解决思路(一)基础问题(二)解决思路三、应用开发流程与示例四、工程管理具体操作五、应用UX设计通用规则与考虑因素一、核心概念与目标定义:一套代码工程,一次开发上架,多端按需部署。目标:帮助开发者快速高效开发支持多种终端设备形态的应用,实现跨设备的流转、迁移和协同的分布式体验,同时兼容不同设备并提供一致的用户体验。二、开发基础问题与解决思路(一)基础问题不同设
- Python 库的记录
weixin_40895135
python
GitHub-jobbole/awesome-python-cn:Python资源大全中文版,内容包括:Web框架、网络爬虫、网络内容提取、模板引擎、数据库、数据可视化、图片处理、文本处理、自然语言处理、机器学习、日志、代码分析等环境管理管理Python版本和环境的工具p–非常简单的交互式python版本管理工具。pyenv–简单的Python版本管理工具。Vex–可以在虚拟环境中执行命令。vir
- 词表设计:特殊Token区域与共享去区域的深入探讨
东方佑
开发语言
在自然语言处理(NLP)中,Tokenizer的设计对于模型性能有着至关重要的影响。Tokenizer不仅决定了文本如何被分割成更小的单位(即token),还决定了这些token如何被映射到模型可以理解的形式。本文将详细探讨一种特殊的Tokenizer设计方法——特殊Token区域与共享去区域的设计理念,并介绍其应用场景和实现方式。特殊Token区域概述特殊Token区域通常包括一些特定的标识符,
- 实习成长之路:关于ElasticSearch深度分页带来的思考,如何解决深度分页和跳页
会写代码的花城
实习踩坑之路reids并发elasticsearch搜索引擎分布式
问题引入我们在平常使用ElasticSearch构建查询条件的时候一般用的都是from+size的方式进行分页查询,但是如果我们的页数太深/页面大小太大(from*size)>10000就会引发一个错误,我们将会得到一个错误这是为什么呢?因为ES的分页查询其实是这样来的因为ElasticSeach的天生分布式的原因,我们的数据是分散在几个分片中的,而我们设置了from+size需要对全部数据进行查
- Synthesia技术浅析(四):自然语言处理
爱研究的小牛
AIGC—视频AIGC—虚拟现实AIGC—自然语言处理自然语言处理人工智能AIGC
Synthesia的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。一、文本转语音(TTS)1.关键组件Synthesia的TTS系统主要依赖于Tacotron2和WaveGlow模型。这些模型共同作用,将文本转换为高质量的语音。2.过程模型详解2.1文本预处理文本预处理是TTS的第一步,包括分词、标点符号处理、数字和日期格式转换等。分词(
- 启元世界(Inspir.ai)技术浅析(一)
爱研究的小牛
AIGC—游戏制作人工智能机器学习AIGC深度学习
启元世界(Inspir.ai)作为全球领先的通用人工智能平台公司,自2017年成立以来,一直致力于通过人工智能技术提升产业效能和生活体验。公司汇聚了来自全球顶尖公司和高等学府的技术专家,专注于深度强化学习、推荐算法以及机器学习系统平台等前沿领域,并成功将人工智能技术应用于数字娱乐、智能决策和机器人等多个领域。一、核心技术启元世界在人工智能领域取得了多项突破性进展,其核心技术涵盖了以下几个方面:1.
- FPGA实现带阻滤波器:代码与技术要点详解
weixin_42601702
本文还有配套的精品资源,点击获取简介:在电子工程领域,FPGA技术被广泛应用于数字信号处理中,能够实现高度定制化和高效的带阻滤波器。本资料将通过实例代码深入讲解带阻滤波器在FPGA上的设计与实现,涵盖滤波器结构、设计、系数计算、编程语言选择、IP核封装、时序优化、仿真验证和硬件调试等多个关键知识点。1.FPGA与数字信号处理数字信号处理(DSP)是现代通信和电子系统的核心,而现场可编程门阵列(FP
- FPGA 开发工作需求明确:关键要点与实践方法
whik1194
fpga开发
FPGA开发工作需求明确:关键要点与实践方法一、需求明确的重要性在FPGA开发领域,明确的需求是项目成功的基石。FPGA开发往往涉及复杂的硬件逻辑设计、高速信号处理以及与其他系统的协同工作。若需求不明确,可能导致开发过程中频繁变更设计,不仅浪费大量的时间和资源,还可能影响项目的交付进度和最终质量。例如,在设计一个用于图像识别的FPGA系统时,如果对图像分辨率、处理帧率、识别精度等需求没有清晰界定,
- Kafka原理总结
DEMOAHUI
mq中间件kafka
Kafka是一个开源的分布式流式处理平台,在这个平台上可以发布、订阅以及处理数据流,具有强大的吞吐能力,让Kafka成为了一个高性能的发布与订阅消息系统一:概念理解Broker部署Kafka进程的服务被称之为Broker,Broker会接收Producer的消息,持久化到本地,然后Comsumer通Pull的形式进行消息拉取,通常使用集群的形式进行部署Producer生产者,即发送消息的一方,往B
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- 阿里巴巴大数据系统体系架构
大连赵哥
大数据架构
数据应用层:这是最顶层,面向不同的用户群体提供服务,包括对内(公司内部使用)、对平台(平台用户)、对商家(商家使用)、对公众(普通消费者)。数据服务与基础工具层:这一层提供了一些基础服务和工具,例如:OneService:可能是一种服务或工具,用于统一数据服务。TDDL+MySQL:TDDL是淘宝分布式数据层的缩写,与MySQL结合使用,提供数据库服务。HBase:一个分布式列存储系统,适合于存储
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 模型架构选择:从传统NLP到Transformer
AI天才研究院
AI大模型应用入门实战与进阶大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
模型架构选择:从传统NLP到Transformer关键词:自然语言处理(NLP),模型架构,传统NLP,Transformer,RNN,CNN,预训练模型文章目录模型架构选择:从传统NLP到Transformer1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1传统NLP模型3.1.2RNN模型3.1.
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- ImportError: DLL load failed while importing _rust: 找不到指定的程序的解决方案
爱编程的喵喵
Python基础课程pythonImportErrorDLLloadfailed_rust解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:DLLloa
- java cap理论_架构设计之「 CAP 定理 」
Can Li
javacap理论
点击上方“Java知音”,选择“置顶公众号”技术文章第一时间送达!作者:奎哥来源:不止思考在计算机领域,如果是初入行就算了,如果是多年的老码农还不懂CAP定理,那就真的说不过去了。CAP可是每一名技术架构师都必须掌握的基础原则啊。现在只要是稍微大一点的互联网项目都是采用分布式结构了,一个系统可能有多个节点组成,每个节点都可能需要维护一份数据。那么如何维护各个节点之间的状态,如何保障各个节点之间数据
- Rust中奖励函数的实现与应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Rust中奖励函数的实现与应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Rust,奖励函数,强化学习,机器学习,状态空间1.背景介绍1.1问题的由来在机器学习领域,特别是在强化学习(ReinforcementLearning,RL)中,奖励函数(RewardFunction)扮演着至关重要的角色。它定义了智能体(Agent)在执行任务时
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- SpringCloud分布式中怎么使用open-feign来相互调用微服务(前提是服务都要注册到注册中心【zookeeper,或者nocas】)
JISOOLUO
实用的示例网关java接口spring
1、引入open-feignorg.springframework.cloudspring-cloud-starter-openfeign
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- 理解随机森林算法
菌菌的快乐生活
算法随机森林机器学习
基本概念随机森林(RandomForest)是一种集成学习算法,它属于机器学习中的监督学习算法。简单来说,它就像是一群“专家”(决策树)在一起讨论并做出决策。想象你要判断一个水果是苹果还是橙子,你可以通过观察水果的颜色、形状、大小等特征。随机森林算法就是利用很多棵决策树来对这个水果进行判断。每一棵决策树就像一个小专家,它们根据自己对这些特征的判断来给出一个答案(是苹果还是橙子),最后综合这些小专家
- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号