- 终于把前后端sm加解密以及加签验证调通了。
清风孤客
前端javascriptspringjavaspringboot
终于把前后端sm加解密以及加签验证调通了!领导要求我对项目的数据传输安全考虑下,因此就想到了对敏感字段做加密和对请求、响应做数字签名验证。网上看了很多文章,可能是因为我对加密这块不了解,感觉都比较乱。所以前前后后花了4天才把前后端调通。特地写一篇文章记录下流程。这里使用的是sm国密算法。不对的地方请读者评论指出。1.简单说明:前端使用sm-crypto库后端加密库使用bc库,架构上使用aop,注解
- C++ STL容器
He Des
c++开发语言
参考oiwikiSTL的产生是为了简化数据结构和算法的内部实现并对任一数据类型都可实现对应操作将功能封装起来,用时即拿类型序列式容器向量vector顺序表可当作动态数组使用数组arrayC++11特性定长顺序表(静态数组)双端队列deque两端均可对数据元素进行高效操作的队列列表list可沿双向遍历的链表(双向链表)单向列表(forward_list)只能单向遍历关系式容器集合set有序性互异性红
- 【算法应用】基于A*-蚁群算法求解无人机城市多任务点配送路径问题
小O的算法实验室
智能算法应用UAV路径规划多目标点路径规划算法多任务点路径规划无人机路径规划
目录1.A星算法原理2.蚁群算法原理3.结果展示4.代码获取1.A星算法原理A*算法是一种基于图搜索的智能启发式算法,它具有高稳定性和高节点搜索效率。主要原理为:以起点作为初始节点,将其加入开放列表。从开放列表中选择具有最小总代价值f(n)f(n)f(n)的节点作为当前节点,其中f(n)f(n)f(n)由实际路径代价g(n)g(n)g(n)和到目标点估计代价h(n)h(n)h(n)组成。检查当前节
- 【算法应用】基于麻雀搜索算法SSA求解车间布局优化问题
小O的算法实验室
智能算法智能算法应用车间布局优化智能算法应用车间布局优化智能算法
目录1.问题背景2.车间布局数学模型3.麻雀搜索算法SSA原理4.结果展示5.参考文献6.代码获取1.问题背景工厂设施布置的规划一直是工业工程领域不断研究和探索的内容,其中最具代表性之一的是系统布置设计(systemlayoutplanning,SLP)方法。作为一种经典且有效的方法,其为设施布置提供了很好的改善思路,但在长期的发展中也存在一些不可避免的缺点,如计算结果不够精确,很难确保计算结果较
- 【智能算法】哈里斯鹰算法(HHO)原理及实现
小O的算法实验室
智能算法算法智能算法
目录1.背景2.算法原理2.1算法思想2.2算法过程3.代码实现4.参考文献1.背景2019年,Heidari等人受到哈里斯鹰捕食行为启发,提出了哈里斯鹰算法(HarrisHawkOptimization,HHO)。2.算法原理2.1算法思想根据哈里斯鹰特性,HHO分为探索-过渡-开发三个阶段。2.2算法过程探索:哈里斯鹰以其强大的视力追踪和检测猎物,但有时猎物不易察觉。它们会在沙漠地区等待、观察
- 利用 Python 编程随机生成 n 个 1~9 之间的整数,然后统计生成的各个随机整数的个数。
hnjzsyjyj
Python程序设计Python列表
【题目描述】利用Python编程随机生成n个1~9之间的整数,然后统计生成的各个随机整数的个数。【算法分析】●输入的n必须≥10,这是因为代码中数组cnt[]的下标会到9。若n小于10,将不会有下标9,就会产生IndexError。●利用“桶排序”中“桶”的思想进行统计。【算法代码】fromrandomimport*n=eval(input("Enteranintegerwhich≥10:"))c
- DeepSeek:突破传统的AI算法与下载排行分析
smart_ljh
行业搜索人工智能AI
DeepSeek的AI算法突破DeepSeek相较于OpenAI以及其它平台的性能对比DeepSeek的下载排行分析(截止2025/1/28AI人工智能相关DeepSeek甚至一度被推上了搜索)未来发展趋势总结在人工智能技术飞速发展的当下,搜索引擎市场也迎来了新的变革。DeepSeek,作为一款基于深度学习技术和大数据算法的搜索引擎,以其独特的优势在国内外市场上引起了广泛关注。下面介绍一下针对De
- 算法题解:数据流中的中位数
琴瑟和鸣1
算法学习数据流中的中位数算法剑指offer
题目描述如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。代码实现importjava.util.*;publicclassSolution{//按照题目中描述,是要所
- Python 实现车牌识别
菜狗小测试
Python技术专栏python计算机视觉opencv
一、车牌识别的基本原理车牌识别主要包括以下几个步骤:图像采集:通过摄像头或其他图像采集设备获取包含车牌的图像。图像预处理:对采集到的图像进行灰度化、滤波、增强等操作,以提高图像的质量和清晰度,便于后续的处理。车牌定位:从预处理后的图像中找出车牌的位置。这可以通过一些特征提取和机器学习算法来实现,例如基于颜色特征、边缘特征等方法来定位车牌区域。字符分割:将定位到的车牌区域中的字符分割开,以便对每个字
- 数学与机器学习:共舞于智能时代的双璧
每天五分钟玩转人工智能
机器学习人工智能
随着人工智能的崛起,机器学习作为其核心技术之一,正引领着新一轮的科技革命。而在这场革命中,数学以其深邃的理论和精妙的工具,为机器学习提供了坚实的支撑。数学与机器学习之间的关系,如同琴瑟和鸣,共同编织出智能时代的华美乐章。数学,作为自然科学的皇后,以其严谨的逻辑和精确的推理,为机器学习提供了坚实的理论基础。机器学习算法的设计、优化和应用,都离不开数学的支持。无论是线性代数、概率统计,还是微积分、最优
- RiskCloud-基于Markov算法精准的FTA、 JSA、FMEA软件
资讯过客视点
算法
这个美美的“花蝴蝶”是什么?样式规整、图案美化、脉络清晰、让人眼前一亮!由上海歌略软件科技有限公司自主研发打造,RiskCloud世界领先的企业级整体风险管理解决方案大作!“BowTie领结图”接下来,就让我们携手一起走进RiskCloud-BowTie领结图,一起领略她的风采吧!风险管理领结图介绍20世纪90年代末,领结图作为一种独特的安全管理工具,开始在国外石油化工领域得到较为广泛的应用。基于
- python实现dbscan
怎么就重名了
算法python开发语言
python实现dbscan原理DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一个比较有代表性的基于密度的聚类算法。它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。DBSCAN中的几个定义:Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域;核心对象:如
- 02数组+字符串+滑动窗口+前缀和与差分+双指针(D5_双指针)
Java丨成神之路
06数据结构与算法java
目录一、基本介绍二、算法思想三、算法模型1.对撞指针2.快慢指针3.滑动窗口一、基本介绍双指针是一种应用很广泛且基础的算法,严格来说双指针不是算法更像是一种思想。双指针中的“指针”不仅仅是大家所熟知的C/C++里面的地址指针,还是索引、游标。二、算法思想双指针是指在遍历对象时,使用两个或多个指针进行遍历及相应的操作。大多用于数组操作,这利用了数组连序性的特点。双指针常用来降低算法的时间复杂度,因为
- Python实现图像(边缘)锐化:梯度锐化、Roberts 算子、Laplace算子、Sobel算子的详细方法
闲人编程
pythonpython计算机视觉人工智能SobelLaplaceRoberts锐化
目录Python实现图像(边缘)锐化:梯度锐化、Roberts算子、Laplace算子、Sobel算子的详细方法引言一、图像锐化的基本原理1.1什么是图像锐化?1.2边缘检测的基本概念二、常用的图像锐化算法2.1梯度锐化2.1.1实现步骤2.2Roberts算子2.2.1实现步骤2.3Laplace算子2.3.1实现步骤2.4Sobel算子2.4.1实现步骤三、Python实现图像锐化3.1导入必
- 从模型到实际:人工智能项目落地的关键要素
IT猫仔
科技人工智能语言模型自然语言处理搜索引擎服务器机器学习
引言近年来,人工智能技术从实验室走向实际应用,其潜力在各行各业得到了初步的验证。然而,AI技术的落地并非一蹴而就,许多企业在尝试部署AI项目时,却发现自己陷入了“模型很好看,应用却难做”的困境。无论是数据准备不足、算法与场景的不匹配,还是缺乏持续优化的机制,这些问题都可能导致项目停滞,甚至功亏一篑。前排提示,文末有大模型AGI-CSDN独家资料包哦!对于企业来说,人工智能的价值不仅在于模型的高精度
- [C#] 对24位图像进行水平翻转(FlipX)的跨平台SIMD硬件加速向量算法(使用YShuffleX3Kernel)
zyl910
VectorTraitsc#算法开发语言SIMD图像处理
文章目录一、标量算法1.1算法实现1.2基准测试代码二、向量算法2.1算法思路2.1.1难点说明2.1.2解决办法:每次处理3个向量2.1.3用YShuffleX3Kernel对3个向量内的24位像素进行翻转2.2算法实现2.3基准测试代码2.4使用YShuffleX3Kernel_Args来做进一步的优化三、基准测试结果3.1X86架构3.1.1X86架构上`.NET6.0`程序的测试结果3.1
- scikit-learn基本功能和示例代码
weixin_30777913
深度学习机器学习pythonscikit-learn
scikit-learn(简称sklearn)是一个广泛使用的Python机器学习库,提供了丰富的工具和算法,涵盖了数据预处理、模型训练、评估和优化等多个方面。scikit-learn是一个功能强大的机器学习库,涵盖了数据预处理、分类、回归、聚类、降维、模型选择与评估等多个方面。通过上述代码示例,您可以快速上手并使用scikit-learn进行机器学习任务。以下是对scikit-learn主要功能
- 强化学习很多ac架构的算法比如ppo,为什么使用状态价值网络而不使用动作价值网络实现critic呢?|状态价值网络的优势与挑战|Actor-Critic|状态价值|强化学习
concisedistinct
人工智能算法人工智能架构
目录1.强化学习的基础1.1策略与价值函数2.Actor-Critic架构概述2.1Critic的作用3.为什么选择状态价值网络?3.1训练稳定性3.2计算效率3.3高维动作空间的适应性4.使用状态价值网络的挑战4.1收敛速度4.2欠拟合风险5.解决方案与未来方向5.1改进的状态价值网络5.2结合动作价值和状态价值6.结论随着强化学习技术的不断发展,其在诸如游戏、机器人控制和金融预测等领域的应用越
- 强化学习中,为什么用AC架构
资源存储库
算法强化学习算法
目录强化学习中,为什么用AC架构为什么用AC架构?AC架构的工作原理AC架构的优缺点优点:缺点:相关算法:基于AC架构的算法总结强化学习中,为什么用AC架构在强化学习(ReinforcementLearning,RL)中,AC架构(即Actor-Critic架构)是一种非常常用的架构,用于训练智能体(Agent)在环境中执行任务。AC架构结合了策略梯度方法和价值迭代方法,通过分离策略和价值函数的估
- 【大模型应用开发 动手做AI Agent】LlamaIndex和基于RAG的AI开发
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录【大模型应用开发动手做AIAgent】LlamaIndex和基于RAG的AI开发1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系LlamaIndexRAG联系3.核心算法原理&具体操作步骤3.1算法原理概述LlamaIndexRAG3.2算法步骤详解LlamaIndexRAG3.3算法优缺点LlamaIndexRAG3.4算法应用领域4.数学模型和公
- 2022年最新【Java八股文背诵版面试题】面试必备,查漏补缺;多线程+spring+JVM调优+分布式+redis+算法
Java面试_
Javajava面试jvm
前言春招,秋招,社招,我们Java程序员的面试之路,是挺难的,过了HR,还得被技术面,小刀在去各个厂面试的时候,经常是通宵睡不着觉,头发都脱了一大把,还好最终侥幸能够入职一个独角兽公司,安稳从事喜欢的工作至今...近期也算是抽取出大部分休息的时间,为大家准备了一份通往大厂面试的小捷径,准备了一整套Java复习面试的刷题以及答案,我知道很多同学不知道怎么复习,不知道学习过程中哪些才是重点,其实,你们
- 链表和数组数据结构对比
怪咖学生
java数据结构
随着计算机硬件和技术的进步,60年代时在计算领域发明的链表的某些优点已经大大减少,尤其是在现代硬件、CPU缓存和指针追踪技术的影响下,链表在插入和删除操作中的性能优势已经不再明显。尤其是在迭代操作上,ArrayList的表现通常要比LinkedList更为高效,主要原因在于指针追踪和CPU缓存未命中。1.链表的性能劣势CPU缓存未命中:链表中的元素是通过指针链接的,因此当我们迭代一个链表时,CPU
- RAG技术架构深度解析(非常详细)零基础入门到精通,收藏这一篇就够了
Python_chichi
程序员互联网大模型架构人工智能机器学习语音识别
本文主要介绍了RAG技术架构在AI编程中的创新应用及其面临的挑战。文章深入分析了RAG技术架构的兼容性、实时性和智能化水平等方面的问题,并提出了相应的改进措施,如加强标准化建设、引入实时数据处理技术和先进算法模型。同时,文章预测了RAG技术架构在智能化水平持续提升、跨领域融合加速以及数据隐私与安全保障方面的未来发展趋势。最后,文章回顾了RAG技术在AI编程领域的应用成果,并展望了其广阔的应用前景,
- 【第十天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-两种常见的字符串算法(持续更新)
Long_poem
算法python哈希算法
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Python数据结构与算法的详细介绍1.Python中的常用的字符串算法2.字符串算法3.详细的字符串算法1)KMP算法2)Rabin-Karp算法总结前言提示:这里可以添加本文要记录的大概内容:第一天Python数据结构与算法的详细介绍第二天五种常见的排序算法第三天两种常见的搜索算法第四天两种常见的递归算法第五天一种
- 算法设计与分析-----贪心法
拾亿-唯一
算法算法贪心算法c语言
算法设计与分析-----贪心法(c语言)一、贪心法1、定义2、贪心法具有的性质1、贪心选择性质2、最优子结构性质3、贪心法的算法框架5、求解活动安排问题6、求解最优装载问题二、贪心法实验1、实验一求解田忌赛马问题2、实验二求解多机调度问题3、实验三哈夫曼编码一、贪心法1、定义贪心法的基本思路是在对问题求解时总是做出在当前看来是最好的选择,也就是说贪心法不从整体最优上加以考虑,所做出的仅是在某种意义
- 头歌实训作业 算法设计与分析-动态规划(第1关:0/1背包问题)
Milk夜雨
头歌实训作业算法动态规划
任务描述求解0/1背包问题。问题描述有n个重量分别为{w1,w2,…,wn}的物品,它们的价值分别为{v1,v2,…,vn},给定一个容量为W的背包。设计从这些物品中选取一部分物品放入该背包的方案,每个物品要么选中要么不选中,要求选中的物品不仅能够放到背包中,而且重量和为W,并具有最大的价值。测试说明测试输入:第一行为2个整数,分别表示物品数量n(1≤n≤20)和背包容量W(1≤W≤10000)。
- 【新春不断更】数据结构与算法之美:二叉树
<但凡.
数据结构与算法之美数据结构算法c++
Hello大家好,我是但凡!很高兴我们又见面啦!眨眼间已经到了2024年的最后一天,在这里我要首先感谢过去一年陪我奋斗的每一位伙伴,是你们给予我不断前行的动力。银蛇携福至,万象启新程。蛇年新春之际,愿你们万事顺遂,岁月皆安,新的一年所想皆如愿,所行皆坦途。好了,给生活添点passion,开始今天的编程之路!我的博客:left=NULL;p->right=NULL;p->x=a;returnp;}1
- 使用 Python 和 scikit-learn 实现 KNN 分类:以鸢尾花数据集为例
弥树子
pythonscikit-learn分类
在机器学习的世界里,K-NearestNeighbors(KNN)算法是一种简单而强大的分类方法。它基于一个直观的想法:相似的数据点往往属于同一类别。本文将通过Python的scikit-learn库实现KNN分类,以经典的鸢尾花数据集为例,展示从数据加载到模型评估的完整流程。1.KNN算法简介KNN是一种监督学习算法,主要用于分类和回归任务。它的工作原理非常简单:对于一个新的数据点,算法会查找训
- machine learning knn算法之使用KNN对鸢尾花数据集进行分类
知识鱼丸
machinelearning机器学习算法分类
通过导入必要的scikit-learn导入必要的库,加载给定的数据,划分测试集和训练集之后训练预测和评估即可具体代码如下:importnumpyasnpfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.preprocessingimportStandardS
- 【计算机视觉】图像滤波
油泼辣子多加
计算机视觉计算机视觉人工智能python神经网络
1.图像滤波定义图像滤波是一种非常重要的图像处理技术,图像平滑、边缘检测、边缘增强、去除噪声都属于图像滤波,图像滤波是一种基于邻域的算法。通过图像滤波,可以实现图像平滑、边缘检测;图像平滑也叫图像模糊,用以去除图像中的噪声、伪影等,它是图像处理和计算机视觉的常见步骤。函数模糊类型特点使用场景cv.blur均值模糊简单快速,所有像素权重相等基础平滑和降噪cv.GaussianBlur高斯模糊中心权重
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号