2986是3675的简化版,只有一个三角形。
这题主要在于求剖分后三角形与圆的相交面积,需要分情况讨论。
具体可以看此博客 http://hi.baidu.com/billdu/item/703ad4e15d819db52f140b0b
在分析第3、4两种情况时,我是用角度来进行判断的,如果<obc||<ocb大于90度就为他所说的第四种情况,不然就是第三种情况。
还有对于sig的解释貌似网上都没写,可能都觉得太简单了。。。自己手画了一下,大体是这个样子的
红色标记那块三角形是需要减掉对于当前多边形,可以看出以最下角进行剖分三角形时,cross(b,c)算的那块小三角形的确是负的,所以需要判断一下当前的面积是要加上的还是要减掉的。
讨论的东西比较多,细节比较多,WA了好多遍,对着数据查了好久终于过了。。
附上一些数据
1 #include <iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<stdlib.h> 6 #include<vector> 7 #include<cmath> 8 #include<queue> 9 #include<set> 10 using namespace std; 11 #define N 100 12 #define LL long long 13 #define INF 0xfffffff 14 const double eps = 1e-8; 15 const double pi = acos(-1.0); 16 const double inf = ~0u>>2; 17 struct point 18 { 19 double x,y; 20 point(double x=0,double y=0):x(x),y(y) {} 21 } p[N]; 22 struct tri 23 { 24 point a,b,c; 25 } tr[N]; 26 typedef point pointt; 27 point operator -(point a,point b) 28 { 29 return point(a.x-b.x,a.y-b.y); 30 } 31 point operator *(point a,double r) 32 { 33 return point(a.x*r,a.y*r); 34 } 35 point operator +(point a,point b) 36 { 37 return point(a.x+b.x,a.y+b.y); 38 } 39 struct line 40 { 41 point u,v; 42 point ppoint(double t) 43 { 44 return point(u+v*t); 45 } 46 }; 47 struct circle 48 { 49 point c; 50 double r; 51 circle(point c,double r):c(c),r(r) {} 52 point ppoint(double a) 53 { 54 return point(c.x+cos(a)*r,c.y+sin(a)*r); 55 } 56 }; 57 double r; 58 point ip; 59 double dcmp(double x) 60 { 61 if(fabs(x)<eps) return 0; 62 return x<0?-1:1; 63 } 64 double dis(point a) 65 { 66 return sqrt(a.x*a.x+a.y*a.y); 67 } 68 double dot(point a,point b) 69 { 70 return a.x*b.x+a.y*b.y; 71 } 72 double cross(point a,point b) 73 { 74 return a.x*b.y-a.y*b.x; 75 } 76 double area(point a,point b,point c) 77 { 78 return fabs(cross(a-c,b-c))/2; 79 } 80 81 int getlinecircle(line ll,circle cc,point &p1,point &p2) 82 { 83 double a = ll.v.x,b = ll.u.x-cc.c.x,c = ll.v.y,d = ll.u.y-cc.c.y; 84 double e = a*a+c*c,f = 2*(a*b+c*d),g = b*b+d*d-cc.r*cc.r; 85 double delta = f*f-4*e*g; 86 double t1,t2; 87 if(dcmp(delta)<0)return 0;//ÏàÀë 88 if(dcmp(delta)==0) 89 { 90 t1 = t2 = -f/(2*e);//cout<<t1<<" -"<<e<<" "<<f<<endl; 91 p1 = ll.ppoint(t1); 92 return 1;//ÏàÇÐ 93 } 94 //Ïཻ 95 t1 = (-f-sqrt(delta))/(2*e); 96 p1 = ll.ppoint(t1); 97 t2 = (-f+sqrt(delta))/(2*e); 98 p2 = ll.ppoint(t2); 99 // cout<<p1.x<<" "<<p1.y<<" "<<p2.x<<" "<<p2.y<<endl; 100 return 2; 101 } 102 double mul(point a,point b,point c) 103 { 104 return cross(b-a,c-a); 105 } 106 bool cmp(point a,point b) 107 { 108 if(dcmp(mul(ip,a,b))==0) 109 return dis(a-ip)<dis(b-ip); 110 else 111 return dcmp(mul(ip,a,b))>0; 112 } 113 double distancetoline(point p,point a,point b) 114 { 115 point v1 = a-b,v2 = p-b; 116 return fabs(cross(v1,v2))/dis(v1); 117 } 118 int dot_online_in(point p,point l1,point l2) 119 { 120 return !dcmp(mul(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps; 121 } 122 double angle(point a,point b) 123 { 124 return acos(dot(a,b)/dis(a)/dis(b)); 125 } 126 double cal(tri tr) 127 { 128 circle cp=circle(point(0,0),r); 129 int sig = dcmp(cross(tr.b,tr.c)); 130 if(sig==0) return 0; 131 double d1 = dis(tr.a-tr.b),d2 = dis(tr.a-tr.c); 132 if(dcmp(d1-r)<=0&&dcmp(d2-r)<=0) 133 { 134 double s = sig*area(tr.a,tr.b,tr.c); 135 return s; 136 } 137 double dline = distancetoline(cp.c,tr.b,tr.c); 138 if(dcmp(d1-r)>=0&&dcmp(d2-r)>=0&&dcmp(dline-r)>=0) 139 { 140 return sig*angle(tr.b,tr.c)*r*r/2.0; 141 } 142 double ag = angle(tr.c-tr.b,tr.a-tr.b),bg = angle(tr.b-tr.c,tr.a-tr.c); 143 point p1,p2; 144 line l1; 145 l1.u = tr.b,l1.v = tr.c-tr.b; 146 getlinecircle(l1,cp,p1,p2); 147 148 if(dcmp(d1-r)>=0&&dcmp(d2-r)>=0&&dcmp(dline-r)<0&&(dcmp(ag-pi/2)>=0||dcmp(bg-pi/2)>=0)) 149 { 150 151 double s = sig*angle(tr.b,tr.c)*r*r/2; 152 return s; 153 } 154 if(dcmp(d1-r)>=0&&dcmp(d2-r)>=0&&dcmp(dline-r)<0) 155 { 156 double s = (angle(tr.b,tr.c)-angle(p1,p2))*r*r/2.0+area(tr.a,p1,p2); 157 return sig*s; 158 } 159 160 p1 = dot_online_in(p1,tr.b,tr.c)?p1:p2; 161 if(dcmp(d1-r)<0) 162 { 163 return sig*(angle(tr.c,p1)*r*r/2+area(tr.a,p1,tr.b)); 164 } 165 else 166 { 167 return sig*(angle(p1,tr.b)*r*r/2+area(tr.a,p1,tr.c)); 168 } 169 } 170 int dots_inline(point p1,point p2,point p3) 171 { 172 return !dcmp(mul(p1,p2,p3)); 173 } 174 int main() 175 { 176 int i,n; 177 while(scanf("%lf",&r)!=EOF) 178 { 179 scanf("%d",&n); 180 for(i = 0; i < n ; i++) 181 { 182 scanf("%lf%lf",&p[i].x,&p[i].y); 183 } 184 p[n] = p[0]; 185 double ans = 0; 186 for(i = 0 ; i < n ; i++) 187 { 188 if(dots_inline(ip,p[i],p[i+1])) continue; 189 tr[i].a = point(0,0); 190 tr[i].b = p[i]; 191 tr[i].c = p[i+1]; 192 ans+=cal(tr[i]); 193 } 194 printf("%.2f\n",fabs(ans)+eps); 195 } 196 return 0; 197 }
589.00 191.00 -554.00 710.00 748.00 774.00 -888.00 -588.00 902.00
201.00 -847.00 -365.00 886.00 -557.00 -609.00 272.00 -345.00 189.00
-358.00 981.00 269.00 511.00 158.00 -304.00 468.00 463.00 834.00
969.00 514.00 -445.00 460.00 -177.00 774.00 -34.00 -125.00 162.00
-467.00 413.00 -714.00 -986.00 362.00 666.00 813.00 271.00 264.00
-497.00 908.00 -414.00 631.00 -220.00 868.00 166.00 -258.00 306.00
-107.00 -743.00 -952.00 322.00 -273.00 -214.00 -14.00 466.00 758.00
511.00 -416.00 -934.00 -745.00 -335.00 -132.00 -482.00 391.00 626.00
928.00 821.00 -293.00 -853.00 -488.00 -312.00 -27.00 94.00 361.00
-979.00 -280.00 791.00 -943.00 -300.00 -278.00 -821.00 684.00 365.00
-700.00 955.00 -315.00 154.00 -103.00 -606.00 404.00 -792.00 940.00
607.00 783.00 597.00 944.00 -672.00 -323.00 343.00 -799.00 526.00
815.00 -390.00 -291.00 37.00 422.00 687.00 672.00 613.00 848.00
-988.00 363.00 -529.00 660.00 -597.00 143.00 502.00 459.00 522.00
-206.00 484.00 109.00 -111.00 424.00 650.00 330.00 -545.00 480.00
94.00 -638.00 -59.00 -9.00 -400.00 -702.00 0.00 267.00 741.00
-859.00 522.00 109.00 -640.00 383.00 712.00 489.00 -663.00 635.00
808.00 -31.00 471.00 172.00 -374.00 21.00 120.00 -860.00 474.00
-539.00 -887.00 498.00 844.00 -453.00 -213.00 -479.00 -9.00 315.00
答案
Case 1
0.00
Case 2
0.00
Case 3
274955.27
Case 4
0.00
Case 5
0.00
Case 6
0.00
Case 7
25157.17
Case 8
9943.87
Case 9
181113.99
Case 10
0.00
Case 11
11846.16
Case 12
0.00
Case 13
404668.37
Case 14
0.00
Case 15
0.00
Case 16
74663.53
Case 17
80015.79
Case 18
0.00
Case 19
57316.85
Case 20
0.00