hadoop计数器:可以让开发人员以全局的视角来审查程序的运行情况以及各项指标,及时做出错误诊断并进行相应处理。
内置计数器(MapReduce相关、文件系统相关和作业调度相关)
也可以通过http://master:50030/jobdetails.jsp查看
/** * 度量,在运行job任务的时候产生了那些j输出.通过计数器可以观察整个计算的过程,运行时关键的指标到底是那些.可以表征程序运行时一些关键的指标. * 计数器 counter 统计敏感单词出现次数 */ public class WordCountApp { private static final String INPUT_PATH = "hdfs://hadoop1:9000/abd"; private static final String OUT_PATH = "hdfs://hadoop1:9000/out"; public static void main(String[] args) { Configuration conf = new Configuration(); try { FileSystem fileSystem = FileSystem.get(new URI(OUT_PATH), conf); fileSystem.delete(new Path(OUT_PATH), true); Job job = new Job(conf, WordCountApp.class.getSimpleName()); job.setJarByClass(WordCountApp.class); FileInputFormat.setInputPaths(job, INPUT_PATH); job.setMapperClass(MyMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); FileOutputFormat.setOutputPath(job, new Path(OUT_PATH)); job.waitForCompletion(true); } catch (Exception e) { e.printStackTrace(); } } public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //获得计数器 Counter counter = context.getCounter("Sensitive Words", "hello");//组名称 计数器名称 String line = value.toString(); if(line.contains("hello")){//假设hello为敏感词 counter.increment(1L); } String[] splited = line.split("\t"); for (String word : splited) { context.write(new Text(word), new LongWritable(1)); } } } public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> { @Override protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { long count = 0L; for (LongWritable times : values) { count += times.get(); } context.write(key, new LongWritable(count)); } } }
每一个map可能会产生大量的输出,combiner的作用就是在map端对输出先做一次合并,以减少传输到reducer的数据量。
combiner最基本是实现本地key的归并,combiner具有类似本地的reduce功能。
如果不用combiner,那么,所有的结果都是reduce完成,效率会相对低下。使用combiner,先完成的map会在本地聚合,提升速度。
注意:Combiner的输出是Reducer的输入,Combiner绝不能改变最终的计算结果。所以从我的想法来看,Combiner只应该用于那种Reduce的输入key/value与输出key/value类型完全一致,且不影响最终结果的场景。比如累加,最大值等。
/** * combiner位于map和reducer中间,会处理一下数据. * 原来的时候记录在直接从map到了reduce, * 现在map端有了combiner,combiner位于map阶段的后面.数据就会经过combiner再进入reduce端 * 加入combiner之后就会在map端分组之后进行合并. * * 为什么使用combiner 目的:减少map端的输出,意味着shuffle时传输的数据量小,网络开销就小了. 使用combiner有什么限制?什么时候不使用,什么时候使用? 有一些时候使用combiner是不合适的 ,比如求平均值不合适.在进行运算的时候,运算的结果和数据的总量有关系的时候就不能使用combiner 幂等可以使用,幂不等就不可以使用.求平均数只能根据全部的样本来求,取一部分那就不行了. 使用combiner的时候通常和reducer的代码是一样的. 但是combiner并不能代表reducer的作用,因为在reducer端还会把多个map的输出合并到一起. 因为combiner只会对单个map做处理,不会对多个map的输出做处理. */ public class WordCountApp { private static final String INPUT_PATH = "hdfs://hadoop1:9000/files"; private static final String OUT_PATH = "hdfs://hadoop1:9000/out"; public static void main(String[] args) { Configuration conf = new Configuration(); try { FileSystem fileSystem = FileSystem.get(new URI(OUT_PATH), conf); fileSystem.delete(new Path(OUT_PATH), true); Job job = new Job(conf, WordCountApp.class.getSimpleName()); job.setJarByClass(WordCountApp.class); FileInputFormat.setInputPaths(job, INPUT_PATH); job.setMapperClass(MyMapper.class); job.setCombinerClass(MyReducer.class);//设置combiner job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); //使用combiner之后,产生的结果和reducer产生的结果是一样的话,可以不要reducer job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); FileOutputFormat.setOutputPath(job, new Path(OUT_PATH)); job.waitForCompletion(true); } catch (Exception e) { e.printStackTrace(); } } public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] splited = line.split("\t"); for (String word : splited) { context.write(new Text(word), new LongWritable(1)); } } } public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> { @Override protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { long count = 0L; for (LongWritable times : values) { count += times.get(); } context.write(key, new LongWritable(count)); } } }
1. Partitioner是partitioner的基类,如果需要定制partitioner也需要继承该类。
2. HashPartitioner是mapreduce的默认partitioner。计算方法是 which reducer=(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks,得到当前的目的reducer。
3. (例子以jar形式运行)
/** * partitioner:分区,指的是对输出的数据进行划分. * 在map端要分成多少个reducer去处理,就会分成多少个区. * 输出结果是手机号和非手机号.要求通过两个reduce分别处理不同的数据.一个是手机号的,一个是非手机的处理. * reduce中的数据是通过shuffle去map那拿的.shuffle在读取数据的时候需要知道哪些数据是给哪些reduce处理的,就需要在map端对数据进行分区. * 分区说白了就是对数据分区的一个索引. * 默认分区类:HashPartitioner * 在Partitioner返回的分区数一定要和reducer的数目相同. */ public class KpiApp { public static final String INPUT_PATH = "hdfs://hadoop1:9000/kpi"; public static final String OUT_PATH = "hdfs://hadoop1:9000/kpi_out"; public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); FileSystem fileSystem = FileSystem.get(new URI(OUT_PATH),conf); if(fileSystem.isDirectory(new Path(OUT_PATH))){ fileSystem.delete(new Path(OUT_PATH)); } Job job = new Job(conf, KpiApp.class.getSimpleName()); job.setJarByClass(KpiApp.class); FileInputFormat.setInputPaths(job, new Path(INPUT_PATH)); job.setMapperClass(MyMapper.class); job.setPartitionerClass(MyPartitioner.class); job.setNumReduceTasks(2); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(KpiWritable.class); FileOutputFormat.setOutputPath(job, new Path(OUT_PATH)); job.waitForCompletion(true); } public static class MyMapper extends Mapper<LongWritable, Text, Text, KpiWritable>{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String line = value.toString();//value就是输入的每一行 String[] splited = line.split("\t");//制表符分割 String mobileNumber = splited[1];//手机号 Text k2 = new Text(mobileNumber); KpiWritable v2 = new KpiWritable(Long.parseLong(splited[6]), Long.parseLong(splited[7]), Long.parseLong(splited[8]), Long.parseLong(splited[9])); context.write(k2, v2); } } public static class MyReducer extends Reducer<Text, KpiWritable, Text, KpiWritable>{ @Override protected void reduce(Text k2, Iterable<KpiWritable> v2s,Context context)throws IOException, InterruptedException { long upPackNum = 0L ;//上行数据包数 long downPackNum = 0L ;//下行数据包数 long upPayLoad = 0L ;//上行总流量 long downPayLoad = 0L ;//下行总流量 for (KpiWritable kpiWritable : v2s) { upPackNum += kpiWritable.upPackNum ; downPackNum += kpiWritable.downPackNum ; upPayLoad += kpiWritable.upPayLoad ; downPayLoad += kpiWritable.downPayLoad ; } KpiWritable v3 = new KpiWritable(upPackNum, downPackNum, upPayLoad, downPayLoad); context.write(k2, v3); } } //如果有一个分区就会返回一个结果,并且这个值还得是0 //reduce的数量一定要大于等于分区的数量. public static class MyPartitioner extends Partitioner<Text, KpiWritable>{ @Override public int getPartition(Text key, KpiWritable value, int numPartitions) { int length = key.toString().length(); return length==11?0:1; //正常的应该是模 而不是简单的比较 // return (int)Math.abs((Math.signum(length-11))%numPartitions) ; } } } class KpiWritable implements Writable{ long upPackNum ;//上行数据包数 long downPackNum ;//下行数据包数 long upPayLoad ;//上行总流量 long downPayLoad ;//下行总流量 @Override public void write(DataOutput out) throws IOException { out.writeLong(upPackNum); out.writeLong(downPackNum); out.writeLong(upPayLoad); out.writeLong(downPayLoad); } //需要注意 按照什么顺序写出去,就按照什么顺序读进来,以为我们的数据写出去之后,是一个流,流是一个一维的. //就是从这个方向到那个方向. @Override public void readFields(DataInput in) throws IOException { this.upPackNum = in.readLong(); this.downPackNum = in.readLong(); this.upPayLoad = in.readLong(); this.downPayLoad = in.readLong(); } public KpiWritable() { } public KpiWritable(long upPackNum, long downPackNum, long upPayLoad, long downPayLoad) { super(); set(upPackNum, downPackNum, upPayLoad, downPayLoad); } public void set(long upPackNum, long downPackNum, long upPayLoad, long downPayLoad) { this.upPackNum = upPackNum; this.downPackNum = downPackNum; this.upPayLoad = upPayLoad; this.downPayLoad = downPayLoad; } @Override public String toString() { return upPackNum + "\t"+downPackNum + "\t"+upPayLoad+"\t"+downPayLoad; } }
1. 在map和reduce阶段进行排序时,比较的是k2。v2是不参与排序比较的。如果要想让v2也进行排序,需要把k2和v2组装成新的类,作为k2,才能参与比较。
2. 分组时也是按照k2进行比较的。
/** * 自定义排序 * 默认排序规则是按照k2进行排序的,v2是不参与排序的 * 如果想让第二列也参与排序 意味着第二列都作为k2,因为我们的规则就是k2参加排序,所以这里使用自定义序列化类型 */ public class SortApp { private static final String INPUT_PATH = "hdfs://hadoop1:9000/data";// 输入路径 private static final String OUT_PATH = "hdfs://hadoop1:9000/out";// 输出路径,reduce作业输出的结果是一个目录 public static void main(String[] args) { Configuration conf = new Configuration();// 配置对象 try { FileSystem fileSystem = FileSystem.get(new URI(OUT_PATH), conf); fileSystem.delete(new Path(OUT_PATH), true); Job job = new Job(conf, SortApp.class.getSimpleName());// jobName:作业名称 job.setJarByClass(SortApp.class); FileInputFormat.setInputPaths(job, INPUT_PATH);// 指定数据的输入 job.setMapperClass(MyMapper.class);// 指定自定义map类 job.setMapOutputKeyClass(NewK2.class);// 指定map输出key的类型 job.setMapOutputValueClass(LongWritable.class);// 指定map输出value的类型 job.setReducerClass(MyReducer.class);// 指定自定义Reduce类 job.setOutputKeyClass(LongWritable.class);// 设置Reduce输出key的类型 job.setOutputValueClass(LongWritable.class);// 设置Reduce输出的value类型 FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));// Reduce输出完之后,就会产生一个最终的输出,指定最终输出的位置 job.waitForCompletion(true);// 提交给jobTracker并等待结束 } catch (Exception e) { e.printStackTrace(); } } public static class MyMapper extends Mapper<LongWritable, Text, NewK2, LongWritable> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] splited = line.split("\t"); context.write(new NewK2(Long.parseLong(splited[0]),Long.parseLong(splited[1])), new LongWritable());// 把每个单词出现的次数1写出去. } } public static class MyReducer extends Reducer<NewK2, LongWritable, LongWritable, LongWritable> { @Override protected void reduce(NewK2 key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { context.write(new LongWritable(key.first), new LongWritable(key.second)); } } public static class NewK2 implements WritableComparable<NewK2>{ long first ; long second ; public NewK2(long first, long second) { super(); this.first = first; this.second = second; } //无参必须有 public NewK2() { // TODO Auto-generated constructor stub } @Override public void write(DataOutput out) throws IOException { out.writeLong(this.first); out.writeLong(this.second); } @Override public void readFields(DataInput in) throws IOException { this.first = in.readLong() ; this.second = in.readLong() ; } @Override public int compareTo(NewK2 o) { long minus = this.first - o.first; if(minus != 0){ return (int) minus ; } return (int)(this.second - o.second); } } }
/** * 自定义分组 * 当第一列相同 要第二列的最大值 * 默认排完序之后是分成6个组的,因为是第二列也参与比较的,那么就没法三组,只有分成第二列中找到最大值 * 3 3 3 2 3 1 2 2 2 1 1 1 */ public class GroupApp { private static final String INPUT_PATH = "hdfs://hadoop1:9000/data"; private static final String OUT_PATH = "hdfs://hadoop1:9000/out"; public static void main(String[] args) { Configuration conf = new Configuration(); try { FileSystem fileSystem = FileSystem.get(new URI(OUT_PATH), conf); fileSystem.delete(new Path(OUT_PATH), true); Job job = new Job(conf, GroupApp.class.getSimpleName()); job.setJarByClass(GroupApp.class); FileInputFormat.setInputPaths(job, INPUT_PATH); job.setMapperClass(MyMapper.class); job.setMapOutputKeyClass(NewK2.class); job.setMapOutputValueClass(LongWritable.class); job.setGroupingComparatorClass(MyGroupComparator.class);//实现一个比较键 job.setReducerClass(MyReducer.class); job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(LongWritable.class); FileOutputFormat.setOutputPath(job, new Path(OUT_PATH)); job.waitForCompletion(true); } catch (Exception e) { e.printStackTrace(); } } public static class MyMapper extends Mapper<LongWritable, Text, NewK2, LongWritable> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] splited = line.split("\t"); context.write(new NewK2(Long.parseLong(splited[0]),Long.parseLong(splited[1])), new LongWritable(Long.parseLong(splited[1])));// 把每个单词出现的次数1写出去. } } public static class MyReducer extends Reducer<NewK2, LongWritable, LongWritable, LongWritable> { @Override protected void reduce(NewK2 key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { long min = Long.MAX_VALUE ; for (LongWritable longWritable : values) { if(longWritable.get() < min){ min = longWritable.get() ; } } context.write(new LongWritable(key.first), new LongWritable(min)); } } public static class NewK2 implements WritableComparable<NewK2>{ long first ; long second ; public NewK2(long first, long second) { super(); this.first = first; this.second = second; } //无参必须有 public NewK2() { // TODO Auto-generated constructor stub } @Override public void write(DataOutput out) throws IOException { out.writeLong(this.first); out.writeLong(this.second); } @Override public void readFields(DataInput in) throws IOException { this.first = in.readLong() ; this.second = in.readLong() ; } @Override public int compareTo(NewK2 o) { long minus = this.first - o.first; if(minus != 0){ return (int) minus ; } return (int)(this.second - o.second); } } public static class MyGroupComparator implements RawComparator<NewK2>{ @Override public int compare(NewK2 o1, NewK2 o2) { return 0; } //分组时只使用这个方法 /** * b1:相当于this * b2:相当于o 比较的 * s1和s2表示从很长的字节数组中从哪个位置去读取你的这个值. * l1和l2表示处理的值长度 */ @Override public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { //只需要比较第一列 long占有8个字节 return WritableComparator.compareBytes(b1, s1, 8, b2, s2, 8); } } }