迪杰斯特拉算法

定义
  Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。
问题描述
  在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
迪杰斯特拉(Dijkstra)算法思想  
按路径长度递增次序产生最短路径算法:
  把V分成两组:
  (1)S:已求出最短路径的顶点的集合
  (2)V-S=T:尚未确定最短路径的顶点集合
  将T中顶点按最短路径递增的次序加入到S中,
  保证:(1)从源点V0到S中各顶点的最短路径长度都不大于
  从V0到T中任何顶点的最短路径长度
  (2)每个顶点对应一个距离值
  S中顶点:从V0到此顶点的最短路径长度
  T中顶点:从V0到此顶点的只包括S中顶点作中间
  顶点的最短路径长度
  依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的
  直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和
  (反证法可证)
  求最短路径步骤
  算法步骤如下:
  1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值
  若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
  若不存在<V0,Vi>,d(V0,Vi)为∝
  2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S
  3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的
  距离值缩短,则修改此距离值
  重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

迪杰斯特拉算法的原理
首先,引进一个辅助向量D,它的每个分量D表示当前所找到的从始点v到每个终点vi的最短路径的长度。如D[3]=2表示从始点v到终点3的路径相对最小长度为2。这里强调相对就是说在算法过程中D的值是在不断逼近最终结果但在过程中不一定就等于最短路径长度。它的初始状态为:若从v到vi有弧,则D为弧上的权值;否则置D为∞。显然,长度为 D[j]=Min{D | vi∈V} 的路径就是从v出发的长度最短的一条最短路径。此路径为(v,vj)。 那么,下一条长度次短的最短路径是哪一条呢?假设该次短路径的终点是vk,则可想而知,这条路径或者是(v,vk),或者是(v,vj,vk)。它的长度或者是从v到vk的弧上的权值,或者是D[j]和从vj到vk的弧上的权值之和。 一般情况下,假设S为已求得最短路径的终点的集合,则可证明:下一条最短路径(设其终点为X)或者是弧(v,x),或者是中间只经过S中的顶点而最后到达顶点X的路径。因此,下一条长度次短的最短路径的长度必是D[j]=Min{D | vi∈V-S} 其中,D或者是弧(v,vi)上的权值,或者是D[k](vk∈S)和弧(vk,vi)上的权值之和。 迪杰斯特拉算法描述如下: 1)arcs表示弧上的权值。若不存在,则置arcs为∞(在本程序中为MAXCOST)。S为已找到从v出发的最短路径的终点的集合,初始状态为空集。那么,从v出发到图上其余各顶点vi可能达到的最短路径长度的初值为D=arcs[Locate Vex(G,v),i] vi∈V 2)选择vj,使得D[j]=Min{D | vi∈V-S} 3)修改从v出发到集合V-S上任一顶点vk可达的最短路径长度。

你可能感兴趣的:(数据结构,算法)