欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。
基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。
递归代码:
__int64 gcd(__int64 a,__int64 b) { return b==0?a:gcd(b,a%b); }
扩展欧几里得
基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,
必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
证明:设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab!=0 时,设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
递归代码:
__int64 exgcd(__int64 a,__int64 b,__int64 &x1,__int64 &y1) { __int64 t,d; if(b==0){ x1=1; y1=0; return a; } d=exgcd(b,a%b,x1,y1); t=x1; x1=y1; y1=t-a/b*y1; return d; }
扩展欧几里德算法的应用主要有以下三方面:
(1)求解不定方程;
(2)求解模线性方程(线性同余方程);
(3)求解模的逆元;
补充定理: