- 企业数字化转型AI能力中台(总体架构、系统功能)建设方案
公众号:优享智库
数字化转型数据治理主数据数据仓库人工智能架构
**企业数字化转型AI能力中台建设方案**一、建设背景与目标随着大数据、云计算、人工智能等技术的快速发展,企业正面临着数字化转型的重要机遇。为了提升企业的智能化水平,加快业务创新,建设AI能力中台成为企业的迫切需求。本方案旨在为企业打造一套功能完善的AI能力中台,实现数据采集与整合、算法模型管理、智能分析与可视化等核心功能,推动企业在各个业务领域实现智能化升级和创新。二、总体架构设计AI能力中台采
- GPTHUB
@小马哥
AIchatgpt文心一言
GPTHUB项目简介GPTHUB,基于AI大模型API实现的自建后端Chat服务,支持同步响应及流式响应,完美呈现打印机效果。支持一键切换ChatGPT(3.5、4.0)模型、月之暗面(Kimi)、文心一言(支持Stable-Diffusion-XL作图)、通义千问、讯飞星火、智谱清言(ChatGLM)等主流模型,后续模型持续对接中。项目包含java网页端、服务端、移动端及管理后台配置。使用参考下
- 单片机与人工智能:融合创新的未来之路
嵌入式大圣
单片机人工智能嵌入式硬件
摘要:本文深入探讨了单片机与人工智能的融合,阐述了单片机在人工智能应用中的角色、挑战与机遇。通过对相关技术的分析、实际案例的展示以及未来发展趋势的展望,揭示了这一融合在推动科技创新和产业发展中的巨大潜力。目录一、引言二、单片机与人工智能的基础概念三、单片机与人工智能的融合技术四、单片机与人工智能融合的应用场景五、单片机与人工智能融合面临的挑战六、单片机与人工智能融合的发展趋势七、结论一、引言随着科
- 网站结构优化:加速搜索引擎收录的关键
百度网站快速收录
搜索引擎
本文来自:百万收录网原文链接:https://www.baiwanshoulu.com/9.html网站结构优化对于加速搜索引擎收录至关重要。以下是一些关键策略,旨在通过优化网站结构来提高搜索引擎的抓取效率和收录速度:一、合理规划网站架构采用扁平化结构:减少网站的层级深度,使搜索引擎爬虫能够更快速地遍历和抓取网站内容。这有助于确保每个页面都能被搜索引擎有效地索引。分类清晰:对于内容丰富的网站,应合
- 实现网站内容快速被搜索引擎收录的方法
百度网站快速收录
搜索引擎
本文转自:百万收录网原文链接:https://www.baiwanshoulu.com/6.html实现网站内容快速被搜索引擎收录,是网站运营和推广的重要目标之一。以下是一些有效的方法,可以帮助网站内容更快地被搜索引擎发现和收录:一、确保内容质量与原创性高质量内容:搜索引擎更倾向于收录提供高质量、有价值内容的网站。因此,要确保网站内容独特、有深度,能够满足用户的需求和兴趣。原创性:原创内容是搜索引
- 构建高效AI中台:解析人工智能中台架构的五大核心层
脱泥不tony
人工智能架构大语言模型大模型AI大模型LLMAI
在人工智能技术蓬勃发展的今天,企业迫切需要一种高效、灵活的方式来整合、管理和应用AI技术。人工智能中台(AIMiddlePlatform)应运而生,它为企业提供了一个统一的技术平台,能够有效支撑多样化的业务需求,实现数字化转型。在本文中,我们将详细解析人工智能中台的整体架构,逐层深入,帮助大家理解如何从底层硬件到上层应用,实现全方位的AI能力构建。一、基础设施层(IaaS):奠定坚实基础任何一个高
- Baklib揭示内容中台与人工智能技术的创新协同效应
清风徐徐de来
其他
内容概要在当今信息爆炸的时代,内容的高效生产与分发已成为各行业竞争的关键。内容中台与人工智能技术的结合,为企业提供了一种新颖的解决方案,使得内容创造的流程更加智能化和高效化。内容中台作为信息流动的核心,能够集中管理和分发多元化的内容资源,为各类用户需求提供服务。同时,人工智能技术则在数据分析、用户行为预测、个性化推荐等方面展现出强大的能力。两者相辅相成,推动了在内容生产过程中的创新与发展。以下表格
- 智安护航:基于人工智能与物联网的智能车祸报警系统设计与实现
IT源码大师
人工智能物联网科技opencv计算机视觉
详细描述:1.引言:智能车祸报警器的背景与意义交通事故是全球范围内导致伤亡和财产损失的主要原因之一。在车祸发生后,及时的报警和救援可以显著降低伤亡率和损失程度。然而,传统的车祸报警方式依赖于目击者或驾驶员的主动报警,存在延迟性和不可靠性。特别是在驾驶员受伤或昏迷的情况下,报警可能无法及时发出,导致救援延误。“智安护航”是一款基于人工智能(AI)与物联网(IoT)技术的智能车祸报警器,旨在通过实时监
- 机器人介绍
max500600
机器人机器人
以下是关于机器人的介绍:定义机器人是一种能够自动执行任务的机器系统,它集成了机电、机构学、材料学及仿生学等多个学科技术,可以接受人类指挥,运行预先编排的程序,或根据人工智能技术制定的原则纲领行动,具备感知、决策、执行等基本特征,可辅助甚至替代人类完成各种任务。发展历程萌芽期:1954年第一台可编程的机器人在美国诞生,1959年世界上第一台工业机器人研制成功,随着机构理论和伺服理论的发展,机器人进入
- 通义千问 Qwen2-VL-2B:技术架构、核心原理、微调操作与场景应用详解
zhangjiaofa
大模型通义千问大模型多模态模型微调
通义千问Qwen2-VL-2B:技术架构、核心原理、微调操作与场景应用详解引言近年来,多模态大模型在人工智能领域取得了显著进展,尤其是在视觉语言理解(Vision-LanguageUnderstanding,VL)方面。阿里云通义千问团队推出的Qwen2-VL-2B模型,作为Qwen2-VL系列中的轻量级版本,凭借其高效的计算性能和强大的多模态处理能力,成为开源社区和工业界关注的焦点。本文将深入解
- 可解释性:走向透明与可信的人工智能
一位小说男主
人工智能入门深度学习机器学习人工智能神经网络
随着深度学习和机器学习技术的迅速发展,越来越多的行业和领域开始应用这些技术。然而,这些技术的“黑盒”特性也带来了不容忽视的挑战。在许多任务中,尽管这些模型表现出色,取得了相当高的精度,但其决策过程不透明,这对于依赖于机器决策的应用(如金融、医疗、法律等)来说,可能是无法接受的。因此,如何提高模型的可解释性、实现透明和可信的人工智能,成为了当下人工智能领域的重要课题。❤️本文将深入探讨机器学习中的可
- **LLM Gateway:您的智能对话门户**
芮奕滢Kirby
LLMGateway:您的智能对话门户llm-gatewayGatewayforsecure&reliablecommunicationswithOpenAIandotherLLMproviders项目地址:https://gitcode.com/gh_mirrors/ll/llm-gateway在人工智能和自然语言处理的浪潮中,LLMGateway以其卓越的设计与功能脱颖而出,为开发者和用户提供
- AI如何帮助解决生活中的琐碎难题?
HUIBUR科技
人工智能
引言:AI已经融入我们的日常生活你有没有遇到过这样的情况——早上匆忙出门却忘了带钥匙,到了公司才想起昨天的会议资料没有打印,或者下班回家还在纠结晚饭吃什么?这些看似微不足道的小事,往往让人疲惫不堪。而如今,人工智能(AI)的出现,正在悄然改变这一切。从语音助手到智能家居,从健康管理到购物推荐,AI正在帮助人们处理生活中的琐碎事务,让每一天变得更高效、更轻松。只需要动动嘴或者点一点手机,就能完成过去
- DeepSeek是由杭州深度求索人工智能基础技术研究有限公司(简称“深度求索”)发布的一系列人工智能模型
大霸王龙
人工智能
DeepSeek是由杭州深度求索人工智能基础技术研究有限公司(简称“深度求索”)发布的一系列人工智能模型,其在知识类任务上展现出了卓越的性能。以下是对DeepSeek的详细介绍,内容虽无法达到10000字,但会尽可能全面且深入地解析其各个方面。一、公司背景与核心理念DeepSeek的母公司深度求索由幻方量化在2023年4月创立。幻方量化是国内量化私募领域的巨头之一,管理规模庞大。DeepSeek的
- 数据挖掘的常用算法
北柠陌寒0207
笔记
在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其
- OpenAI的编程语言和框架,给程序员带来了帮助有哪些
API技术大佬Anzexi58
OpenAI人工智能人工智能深度学习
OpenAI是一个人工智能开发公司,成立于2015年,总部位于美国旧金山。这家公司致力于研究和开发先进的人工智能技术,旨在将这些技术应用到解决全球一些最棘手的问题上。OpenAI以其卓越的技术和实验室出品的groundbreakingAIpapers而闻名。OpenAI的研究涉及深度学习、自然语言处理、视觉感知、强化学习等多个领域,并已在各种应用中取得了令人瞩目的成果。例如,在机器人领域,Open
- LangGraph系列-1:用LangGraph构建简单聊天机器人
梦想画家
机器学习LangGraphLangChain
在快速发展的人工智能和大型语言模型(llm)世界中,开发人员不断寻求创建更灵活、更强大、更直观的人工智能代理的方法。虽然LangChain已经改变了这个领域的游戏规则,允许创建复杂的链和代理,但对代理运行时的更复杂控制的需求也在不断增长。LangGraph是建立在LangChain之上的重要模块,它将彻底改变我们设计和实施人工智能工作流的方式。在这篇博客中,我们提供了一个关于构建聊天机器人和彻底改
- 探索OpenAI Python SDK: 智能编程新里程
周澄诗Flourishing
探索OpenAIPythonSDK:智能编程新里程openai-pythonTheofficialPythonlibraryfortheOpenAIAPI项目地址:https://gitcode.com/gh_mirrors/op/openai-python如果你对人工智能和自然语言处理有浓厚的兴趣,那么这个项目将为你开启新的探索之门——。这是一个由OpenAI开发的Python库,用于与他们的A
- ChatGPT:OpenAI SDK 是什么?
XRT_knives
#知识图谱chatgptopenai
ChatGPT:OpenAISDK是什么?OpenAISDK是OpenAI提供的软件开发工具包(SoftwareDevelopmentKit),用于简化与OpenAIAPI的交互。SDK提供了高层次的接口,使得开发者可以更容易地在应用程序中集成OpenAI的语言模型和其他功能。具体来说,OpenAISDK主要有以下几个作用:简化API调用:SDK封装了底层的API调用细节,提供了更简洁、易用的接口
- Upgini: 智能数据搜索与丰富化引擎 - 提升机器学习和人工智能模型准确性的利器
2401_87189860
人工智能机器学习
Upgini:智能数据搜索与丰富化引擎在当今数据驱动的世界中,机器学习和人工智能模型的准确性至关重要。然而,提高模型准确性往往是一项艰巨的任务,需要大量的特征工程和数据处理工作。幸运的是,Upgini这一创新的Python库为数据科学家和机器学习工程师提供了一个强大的解决方案。Upgini的核心功能Upgini是一个智能数据搜索和丰富化引擎,专为机器学习和AI设计。它的主要功能包括:自动特征发现与
- FragPipe: 一个强大的蛋白质组学数据分析平台
2401_87189860
数据分析数据挖掘
FragPipe简介FragPipe是一个由Nesvizhskii实验室开发的综合性蛋白质组学数据分析平台。它以MSFragger搜索引擎为核心,集成了多种功能强大的分析工具,为研究人员提供了从原始数据处理到生物学解释的一站式解决方案。FragPipe具有用户友好的Java图形用户界面(GUI),同时也支持命令行模式,可以在Windows、Linux或云环境中运行。FragPipe的主要特点快速高
- CopilotForXcode: 为Xcode带来AI辅助编程的强大扩展
2401_87189860
xcode人工智能macos
CopilotForXcode:为Xcode带来AI辅助编程的强大扩展在人工智能快速发展的今天,AI辅助编程工具正在成为开发者提升效率的重要助手。对于使用Xcode进行iOS、macOS等Apple平台开发的Swift程序员来说,一款名为CopilotForXcode的扩展正在受到越来越多的关注。本文将详细介绍CopilotForXcode的主要功能、安装配置过程以及使用技巧,帮助开发者充分利用这
- DeepSeek:突破传统的AI算法与下载排行分析
smart_ljh
行业搜索人工智能AI
DeepSeek的AI算法突破DeepSeek相较于OpenAI以及其它平台的性能对比DeepSeek的下载排行分析(截止2025/1/28AI人工智能相关DeepSeek甚至一度被推上了搜索)未来发展趋势总结在人工智能技术飞速发展的当下,搜索引擎市场也迎来了新的变革。DeepSeek,作为一款基于深度学习技术和大数据算法的搜索引擎,以其独特的优势在国内外市场上引起了广泛关注。下面介绍一下针对De
- 数学与机器学习:共舞于智能时代的双璧
每天五分钟玩转人工智能
机器学习人工智能
随着人工智能的崛起,机器学习作为其核心技术之一,正引领着新一轮的科技革命。而在这场革命中,数学以其深邃的理论和精妙的工具,为机器学习提供了坚实的支撑。数学与机器学习之间的关系,如同琴瑟和鸣,共同编织出智能时代的华美乐章。数学,作为自然科学的皇后,以其严谨的逻辑和精确的推理,为机器学习提供了坚实的理论基础。机器学习算法的设计、优化和应用,都离不开数学的支持。无论是线性代数、概率统计,还是微积分、最优
- 动物产生式识别系统(人工智能实验)
不爱编程的程序媛
人工智能数据结构算法
1.实验原理首先,定义两个整数数组`base`和`temp`,分别用于存储特征值和临时存储输入的特征值。输出特征值代表的信息,包括每个特征值对应的动物类型。提示输入特征值的总数,并使用`Scanner`类从控制台读取输入。使用循环遍历输入的特征值,将其存储在`temp`数组中,并在`base`数组中将对应特征值的位置设为1。根据输入的特征值,设置`base`数组中其他位置的值。例如,如果输入的特征
- 大模型应用:探索AI大模型的50个应用场景:让科技改变生活。
AGI大模型资料分享员
人工智能科技生活agi语言模型自然语言处理
随着人工智能技术的迅猛发展,AI大模型在各个领域的应用日益广泛。百度创始人、董事长兼首席执行官李彦宏在2024年世界人工智能大会上表示,目前AI技术发展路线发生了方向性改变,已从过去辨别式人工智能转向了未来生成式人工智能。他更是呼吁:“大家不要卷模型,要卷应用!”本文将为大家盘点AI大模型的50个应用场景,并按应用频率从高到低进行排列,带您了解AI如何深刻改变我们的工作与生活。1.自然语言处理(N
- ChatGPT到底是什么?会给我们生活来这些改变↓
大模型.
chatgpt生活microsoft语言模型人工智能架构大模型
2022年底,“ChatGPT”这个词悄然进入公众视野。如果你没听说过,或是只把它当成一个聊天机器人,那就太小看它了。很多行业,比如新闻、律师、教育、客服咨询等等,已经把ChatGPT应用在了生产、服务中。那么,ChatGPT究竟是什么?本期内容,我们就来了解ChatGPT和它背后的技术。我们先从它的名字说起。Chat,直译为“闲聊”,可以说ChatGPT是用起来如同微信或QQ的一个聊天应用。只不
- 盘点50个AI大模型企业和典型产品
大模型玩家
人工智能语言模型ai自然语言处理深度学习大模型
OpenAI:-ChatGPT:是OpenAI推出的非常具有影响力的聊天机器人程序,能够进行自然流畅的对话、文本创作、问题解答等,不断迭代升级,引发了全球对大模型的广泛关注。-GPT-4O:OpenAI的新一代AI模型,在语言理解和生成能力上有进一步提升,能够感知用户的情绪,并针对问题以带有情绪的“嗓音”做出反馈。-Sora:文生视频大模型,可根据文本指令生成复杂且具有一定时长的视频,具有多个镜头
- 从模型到实际:人工智能项目落地的关键要素
IT猫仔
科技人工智能语言模型自然语言处理搜索引擎服务器机器学习
引言近年来,人工智能技术从实验室走向实际应用,其潜力在各行各业得到了初步的验证。然而,AI技术的落地并非一蹴而就,许多企业在尝试部署AI项目时,却发现自己陷入了“模型很好看,应用却难做”的困境。无论是数据准备不足、算法与场景的不匹配,还是缺乏持续优化的机制,这些问题都可能导致项目停滞,甚至功亏一篑。前排提示,文末有大模型AGI-CSDN独家资料包哦!对于企业来说,人工智能的价值不仅在于模型的高精度
- 大模型产品架构全景解读:从应用场景到技术支持的完整路径
健忘的派大星
架构人工智能语言模型aiagiLLMAI大模型
前言随着人工智能技术的迅猛发展,大模型逐渐成为推动各行业智能化转型的核心动力之一。大模型不仅可以处理大量数据,进行复杂任务的自动化,还能通过微调、蒸馏等技术在特定场景中表现出色。本文将结合大模型产品架构图,详细解读每一个组成模块,帮助读者理解从应用场景到技术支持的完整路径,洞察大模型如何在实际业务中落地。一、落地场景:赋能业务的智能化解决方案大模型的实际价值首先体现在各个业务场景的落地应用中。在架
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不