- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)
吃兔子的大脑腐
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于改进粒子群算法的混合储能系统容量优化研究一、混合储能系统容量优化的背景与挑战1.混合储能系统的定义与组成2.容量优化的核心目标3.优化面临的挑战二、传统粒子群算法的局限性及其改进策略1.传统PSO的缺陷2.改进粒子群算法的核心方法三、改进PSO在HESS容量
- 学习笔记(29):训练集与测试集划分详解:train_test_split 函数深度解析
宁儿数据安全
#机器学习学习笔记深度学习
学习笔记(29):训练集与测试集划分详解:train_test_split函数深度解析一、为什么需要划分训练集和测试集?在机器学习中,模型需要经历两个核心阶段:训练阶段:用训练集数据学习特征与目标值的映射关系(如线性回归的权重)。测试阶段:用测试集评估模型在未见过的数据上的表现,避免“过拟合”(模型只记住训练数据的噪声,无法泛化到新数据)。类比场景:学生通过“练习题”(训练集)学习知识,再通过“考
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- 森林的智慧:随机森林与集成学习的民主之道
田园Coder
人工智能科普人工智能科普
当约阿夫·弗罗因德和罗伯特·沙皮尔提出的AdaBoost算法在90年代末期以其强大的预测精度震惊机器学习界,展示了“团结弱者为强者”的集成魅力时,另一种集成思想也在悄然孕育。这种思想同样信奉“众人拾柴火焰高”,但走的是一条与AdaBoost截然不同的路径:它不执着于反复调整数据权重去“关注”被前序模型分错的困难样本,而是致力于创造尽可能多样化的模型,然后让这些模型平等地投票。它的核心哲学是:如果每
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- 解释LLM怎么预测下一个词语的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型python深度学习人工智能机器学习
解释LLM怎么预测下一个词语的通过上文词的向量进行映射在Transformer架构的大语言模型(如GPT系列、BERT等)中,词语会先被转化为词向量。在预测下一个词时,模型会基于之前所有词的向量表示(并非仅仅上一个词,但上一个词的向量是重要信息来源之一)进行计算。以GPT-2为例,在生成文本时,它会将输入文本中每个词对应的词向量依次输入到模型的多层Transformer编码器-解码器结构中。每一层
- 机器学习在智能制造业中的应用:质量检测与设备故障预测
Blossom.118
机器学习与人工智能机器学习人工智能深度学习神经网络机器人sklearntensorflow
随着工业4.0和智能制造的推进,制造业正经历着一场深刻的数字化转型。智能制造业通过整合物联网(IoT)、大数据和机器学习等先进技术,实现从生产计划到质量控制的全流程优化。机器学习技术在智能制造业中的应用尤为突出,尤其是在质量检测和设备故障预测方面。本文将探讨机器学习在智能制造业中的应用,并分析其带来的机遇和挑战。一、智能制造业中的质量检测(一)传统质量检测方法的局限性传统的质量检测主要依赖于人工检
- 大语言模型:是逐字生成还是一次多词?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython算法prompt人工智能自然语言处理均值算法
大语言模型(LLM)既可以按顺序逐个生成单词(token),也能实现一次生成多个token核心差异源于解码策略与模型架构设计一、常规“逐个生成”模式(基础逻辑)多数入门级演示或简单文本生成中,LLM会默认按“生成一个token→拼接回输入→再生成下一个”的流程,本质是自回归(Auto-Regressive)机制的基础应用。比如用小语言模型续写“今天天气____”:模型先基于“今天天气”预测第一个t
- 数学建模_插值
wwer142526363
数学建模
什么是插值拉格朗日插值法埃尔米特插值法三次样条插值法matlab应用分段三次埃尔米特插值法三次样条插值法(更好更光滑二维插值详见上机篇什么是插值省略插值法定理拉格朗日插值法牛顿插值法省略埃尔米特插值法三次样条插值法省略样条插值法matlab应用分段三次埃尔米特插值法详见上机篇三次样条插值法(更好更光滑二维插值详见上机篇上机篇24分钟开始
- 面了字节跳动的数据挖掘岗,感觉真的很难。。。
大模型爱好者社区
机器学习深度学习面试宝典数据挖掘人工智能数据分析算法面试
节前,我们社群组织了一场技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对新手如何入门机器学习算法、该如何备战、面试常考点分享等热门话题进行了深入的讨论。基于社群的讨论,今天我整理了一个同学的面试题,分享给大家,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以文末加入我们交流群。一面40min【编程题】有两种数据,分别是被转发的用户和转发的
- 【字节跳动】数据挖掘面试题0002:从转发数据中求原视频用户以及转发的最长深度和二叉排序树指定值
言析数智
数据挖掘常见面试题数据挖掘面试题
文章大纲题目一:从转发数据中求原视频用户以及转发的最长深度问题分析解题思路寻找原视频用户计算转发最长深度题目二:在一棵二叉排序树中,找到比给定数值小的最大节点方法思路题目一:从转发数据中求原视频用户以及转发的最长深度在数据处理和算法面试中,常常会遇到一些基于实际业务场景的题目,比如根据用户转发数据来分析原视频用户以及转发深度。今天就来探讨一道这样的面试题:给定被转发用户和转发用户两组数据,求原视频
- 【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
言析数智
数据挖掘常见面试题数据挖掘人工智能面试题
题目描述打车的场景下,poi记录了建筑物的坐标:poi(pid,x,y),odr记录的是乘客上车点的坐标:odr(oid,x,y);希望对所有的poi,获得其周围的100m的odr:结果(pid,oid)打车场景下POI与ODR空间关联查询在打车场景中,我们经常需要将建筑物坐标(POI)与乘客上车点(ODR)进行空间关联分析。这个问题本质上是一个空间连接(SpatialJoin)问题,需要找到距离
- Python 爬虫实战:知乎热榜趋势分析(话题生命周期 + 影响力评估)
Python核芯
Python爬虫实战项目python爬虫开发语言
一、引言知乎作为国内知名的问答社区,其热榜功能汇聚了当下最受关注的话题。这些话题的热度变化反映了公众兴趣的动态,对于内容创作者、市场营销人员和数据分析师等具有极高的参考价值。本文将详细介绍如何通过Python和Scrapy技术实现知乎热榜数据的自动化爬取,并结合数据分析手段进行话题热度分析和趋势预测。二、目标网站分析(一)知乎热榜页面结构知乎热榜页面(https://www.zhihu.com/h
- 引导语言的魔法:从简单指令到智能对话的艺术
步子哥
智能涌现AGI通用人工智能人工智能python机器学习
大型语言模型(LLMs)就像一台精密的预测机器,依靠输入的提示(prompt)生成令人惊叹的输出。然而,撰写一个高效的提示并非易事——它需要科学与艺术的结合。无论是要求模型生成代码、回答问题,还是创作故事,提示的设计决定了输出的质量。本文将深入探讨提示工程(PromptEngineering)的奥秘,带你从基础配置到高级技巧,揭示如何通过精心设计的提示,引导LLMs生成准确、有趣且实用的结果。准备
- Python爬虫实战:如何爬取雪球网的股票数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言自动化区块链
引言雪球网(Xueqiu)是中国知名的股票投资社交平台,它提供了丰富的股票数据、投资者的评论和分析,并允许用户进行股票交易的模拟。雪球平台集成了大量的股市数据,包括个股的实时行情、财务数据、投资者分析以及论坛社区内容。许多投资者和金融分析师都在该平台上进行股票研究、讨论和数据挖掘。在本文中,我们将介绍如何通过Python爬虫抓取雪球网的股票数据。通过分析雪球网提供的API和网页结构,获取个股的实时
- 职业本科智能终端开发实训室解决方案
武汉唯众智创
智能终端开发实训室智能终端开发智能终端APP开发实训室APP开发智能终端实训室
一、引言在数字化时代的浪潮下,智能终端已成为人们生活与工作中不可或缺的工具。从智能手机、智能平板到各类可穿戴设备,智能终端的广泛应用深刻改变了人们的生活方式与工作模式。智能终端的迅猛发展,使得市场对相关专业人才的需求极为迫切。据权威机构预测,未来几年,智能终端开发领域的人才缺口将持续扩大,对具备扎实专业知识与丰富实践经验的高素质人才的需求尤为显著。职业本科教育作为培养应用型人才的重要阵地,在智能终
- 基于改进扩散模型与注意力机制的影像到转基因数据预测系统
基于改进扩散模型与注意力机制的影像到转基因数据预测系统1.项目概述本系统利用改进的扩散模型结合注意力机制,从医学影像中预测转基因数据。系统采用PyTorch框架实现,包含数据预处理、模型架构、训练流程和评估指标等完整模块。importtorchimporttorch.nnasnnimporttorch.nn.functionalasFimporttorch.optimasoptimfromtorc
- Python Day57
别勉.
python机器学习python开发语言
Task:1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR§自回归模型:当前值受到过去p个值的影响b.MA(q)移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q)自回归滑动平均模型:同时存在自回归和冲击影响时间序列分析:ARIMA/SARIMA模型构建流程时间序列分析的核心目标是理解序列的过去行为,并
- 我的创作纪念日
勤勉螺丝钉
学习
手指轻敲键盘,一下又一下,思绪如潮水般涌来。我写了很多字,又反复斟酌,最终一个个删除。不是无话可说,而是想表达的太多,怕言语不够真挚,怕文字不够动人。官方提供的模板固然规范,但总觉得少了些属于自己的温度与风格。于是,我选择放下模板,回归内心,用最真诚的方式写下这段话。从开始创作至今,已经整整512天了。这五百多个日夜,有过迷茫、有过坚持、也有过收获。一路走来,我在CSDN这个知识平台上不断学习、不
- Tensorflow 回归模型 FLASK + DOCKER 部署 至 Ubuntu 虚拟机
准备工作:安装虚拟机,安装ubuntu,安装python3.x、pip和对应版本的tensorflow和其他库文件,安装docker。注意事项:1.windows系统运行的模型文件不能直接运行到虚拟机上,需在虚拟机上重新运行并生成模型文件2.虚拟机网络状态改为桥接Flask代码如下:fromflaskimportFlask,request,jsonifyimportpickleimportnump
- 基于大模型的地中海贫血全流程预测与治疗管理研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与目标1.3研究方法与数据来源二、地中海贫血概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征2.4临床表现与诊断方法三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3应用于地中海贫血预测的优势四、术前风险预测与手术方案制定4.1术前风险因素分析4.2大模型预测模型构建与验证4.3根据预测制定个性化手术方案五、
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案
目录一、系统架构设计1.1数据采集与预处理模块1.2大模型核心算法模块二、全流程系统流程图三、系统集成方案3.1模块交互流程3.2数据流示意图四、系统部署拓扑图五、核心模块实现细节5.1术前风险预测算法5.2术中监测算法5.3术后并发症预测模型六、关键技术验证方案6.1模型验证流程6.2临床试验设计框架七、典型应用场景流程7.1腹腔镜手术决策流程一、系统架构设计1.1数据采集与预处理模块#数据采集
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、系统架构设计(一)数据采集与预处理模块(二)大模型核心算法模块(三)应用层功能模块三、全流程系统流程图四、术前阶段详细方案(一)患者信息采集与整合(二)胆囊结石风险预测(三)手术方案制定辅助(四)麻醉方案规划五、术中阶段详细方案(一)实时数据监测与传输(二)手术进程智能辅助六、术后阶段详细方案(一)术后恢复情况预测(二)并发症风险预测(三)护理方案调整(四)康复指导七、并发症风险预
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- 基于MATLAB平台设计并实现自适应噪声抵消器(Adaptive Noise Canceller, ANC)
AI Dog
自动控制matlab自适应噪声抵消器ANC信号去噪
本课题旨在基于MATLAB平台设计并实现自适应噪声抵消器(AdaptiveNoiseCanceller,ANC),以有效去除信号中的背景噪声,提升语音、医疗或通信系统中的信噪比。系统采用自适应滤波算法,如最小均方误差(LMS)或归一化LMS(NLMS)算法,通过参考噪声信号估计并抵消主通道信号中的噪声成分,实现动态降噪。研究内容包括信号采集与仿真建模、自适应滤波器结构设计、算法参数调整及降噪性能评
- 详解MATLAB/Simulink通信系统建模与仿真代码及PPT
甄亚凌
详解MATLAB/Simulink通信系统建模与仿真代码及PPT项目地址:https://gitcode.com/open-source-toolkit/376e9欢迎来到这个专注于通信系统建模与仿真的开源资源库。本仓库致力于为MATLAB与Simulink的学习者和研究者提供详尽、实用的教学资源,特别是针对通信系统领域的实践者。通过这一平台,您将获取到全面覆盖各章节的经典案例,不仅包含精心编写的
- 基于MATLAB/simulink风力发电仿真,双馈风机模型 空气动力学模型源码等
资深码侬
matlabmatlab开发语言
基于MATLAB/simulink风力发电仿真,双馈风机模型空气动力学模型源码文章目录空气动力学模型双馈风机模型Simulink模型框架示例代码片段1.创建Simulink模型2.空气动力学模型代码3.MPPT控制器代码4.运行仿真总结1.创建Simulink模型2.空气动力学模型代码3.MPPT控制器代码4.运行仿真总结基于MATLAB/Simulink进行风力发电仿真,特别是使用双馈感应发电机
- 深度学习流体力学【干货】
人工智能交叉前沿技术,
人工智能深度学习python机器学习
深度学习作为一种新兴的机器学习技术,为流体科学的研究提供了新的思路和方法。通过对大量数据的学习和分析,深度学习模型可以自动提取特征和模式,为流体科学中的复杂问题提供解决方案。然而,深度学习在流体科学中的应用还面临一些挑战,需要进一步研究和探索。未来,深度学习与传统流体力学方法的结合将成为流体科学研究的重要方向,多模态数据的融合、模型的可解释性、实时预测和控制等将是深度学习在流体科学中发展的重点。相
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$