- 呼叫中心部门如何激发员工的创新和潜能
野蛮的大西瓜
FreeIPCC转载开源人工智能音频实时音视频视频编解码
呼叫中心部门如何激发员工的创新和潜能作者:基于Java、Python与FreeSWITCH的开源大模型智能呼叫中心系统FreeAICC,Github地址:https://github.com/FreeIPCC/FreeAICC激发员工的创新和潜能是提升组织竞争力、推动持续发展的关键。以下是一些有效的策略,旨在营造一个鼓励创新、促进个人成长的工作环境:一、建立创新文化倡导开放思维:鼓励员工提出新想法
- java 异常 断言 日志,JAVA的异常,断言,日志
lockwherever
java异常断言日志
一:异常所有的异常都是由Throwable继承而来,在下一层立即分解为:Error和Exception。Error类层次结构描述了java运行时系统的内部错误和资源耗尽错误。应用程序不应抛出这种类型的对象,如果出现了这种错误,除了通知用户无能为力。所以不做过多关注Exception层次分为两个分支:一个分支派生于RuntimeException(可避免发生),另一个包含其他异常。划分两个分支的规则
- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- 深入剖析 Scikit-learn 中的 LogisticRegression:参数调优指南
夜色呦
scikit-learn机器学习人工智能
LogisticRegression是一种广泛应用于二分类问题的机器学习算法。在scikit-learn库中,LogisticRegression类提供了一个高效且易于使用的实现。本文将深入探讨LogisticRegression的各种参数,并展示如何通过调整这些参数来优化模型的性能。1.LogisticRegression简介LogisticRegression通过使用逻辑函数将线性回归的输出映
- Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
是Dream呀
Pythonpython神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
坐望云起
深度学习从入门到精通机器学习深度学习语音识别光谱图Whisper
一、简述语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1.音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2.预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3.特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。4.模型训练:在特征提取完
- 深入学习华为IPD流程之华为-PDT经理角色认知培训教材
智慧化智能化数字化方案
项目经理售前工程师技能提升学习华为华为IPD流程pdt经理华为IPDipd产品研发IPD项目管理
本文介绍了PDT经理的角色认知,包括其在IPD体系中的位置、基本角色定位、关键管理活动、能力模型和评估方法以及培养路径。文章指出PDT经理是重量级产品开发团队的管理者,负责产品的商业成功和跨功能部门合作,通过绩效管理加强团队凝聚力,对商业结果负责。重点内容:1.PDT经理角色重要,负责产品商业成功和跨功能部门合作。2.关键管理活动包括制定产品策略、管理交付、提升客户满意度等。3.PDT经理需具备战
- 面向算网的数字孪生关键技术研究及应用探讨
罗伯特之技术屋
大数据与数字化的设计应用专栏网络大数据
摘要为了解决算网运营中面临的感知实时精度高、融合管控智能程度高、系统场景复杂度高、新技术部署难度高等问题,从宏观政策、行业标准化及运营商实践等方面对数字孪生网络发展现状进行分析,提出面向算网的数字孪生网络体系架构,对数字孪生网络关键能力进行深入研究,同时对数字孪生网络在提升算网业务感知、赋能算网智能运营的典型应用进行探讨。01概述数字孪生被业界视为物理世界和数字世界之间的桥梁。通过数字孪生技术建立
- 数字孪生制造:如何通过数字化技术提高产品质量和生产效率
AI天才研究院
大数据AI人工智能自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术随着数字技术的发展、生产线上工具的更新换代,数字孪生制造(Digitaltwins)已经成为制造业的一个热点方向。数字孪生制造可以帮助企业实现软硬件联动的全自动化,同时还可以降低成本、提升品牌知名度和竞争力。它在企业资源方面有巨大的投入,既包括资金、人员、设备等,也包括智能制造系统、算法模型和云计算平台等基础设施建设。虽然数字孪生制造的研发已经进入了新阶段,但其实际应用
- 【人工智能】基于Python的机器翻译系统,从RNN到Transformer的演进与实现
蒙娜丽宁
Python杂谈人工智能人工智能python机器翻译
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界机器翻译(MachineTranslation,MT)作为自然语言处理领域的重要应用之一,近年来受到了广泛的关注。在本篇文章中,我们将详细探讨如何使用Python实现从传统的循环神经网络(RNN)到现代Transformer模型的机器翻译系统。文章将从机
- 备战美赛!2025美赛数学建模C题模拟预测!用于大家练手模拟!
灿灿数模
数学建模
完整的思路代码模型见文末2025美赛数学建模C题模拟题:城市交通拥堵指数的预测与管理策略背景随着全球城市化进程的加快,交通拥堵问题成为城市发展的重要挑战之一。交通拥堵不仅影响居民出行效率,还增加了能源消耗和碳排放。近年来,各大城市开始尝试通过实时数据监控和人工智能技术对交通拥堵进行预测和管理。然而,由于城市交通系统的复杂性,现有方法在实际应用中仍面临诸多挑战。任务作为一名数据分析专家,你的任务是基
- AI计算的未来:中心化与去中心化的博弈
智识微光Intelligence
人工智能去中心化区块链
引言人工智能(AI)技术的迅猛发展正在全球计算格局中。最新发布的DeepSeekr1模型,以远低于传统大模型的成本实现了相当水平的推理能力,甚至能够在工作站上本地运行。一次突破AI计算正在经历从中心化(云计算)到去中心化(本地推理)的重大转变。这种变化不仅影响AI产业的商业模式,还可能构建全球计算基础设施、经济利益格局,并加速人工超级智能(ASI)的到来。因此,本文将探讨人工智能训练成本的降低、推
- 2025年美国大学生数学建模竞赛C题思路(对每题分析)
FFMXjy
数学建模学习-传统算法机器学习深度学习系列课程数学建模美赛美国大学生数学建模
2025年美国大学生数学建模竞赛C题思路开发奖牌数预测模型1.目标:建立一个模型来预测每个国家的奖牌数,特别是金牌和总奖牌数。步骤:2.使用提供的summerOly_athletes.csv和summerOly_medal_counts.csv数据。3.清理数据,处理缺失值和异常值。4.提取有用的特征,如国家、年份、项目、奖牌类型等。5.选择适当的机器学习算法,如线性回归、随机森林或梯度提升树。6
- 探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度
窦育培
探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度PaddleFleetX飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。项目地址:https://gitcode.com/gh_mirrors/pa/PaddleFleetX在人工智能的快速发展中,大模型已经成为推动技术创新的重要力量。如今,我们有幸向您推荐一个全新的开源项目——Paddle
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
HyperAI超神经
TVM人工智能机器学习TVM编程编译器GPUCPU
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- Python入门教程丨3.2 再见Excel!用Python这5个模块,我把3天工作压缩到3分钟
凌小添
Python教程pythonexcel开发语言
⭐还在用Excel手动算均值方差?还在为海量数据统计熬夜加班?用Python这5把「数据手术刀」写一次代码,就能直接复用,专业报告自动生成!本期内容:模块核心功能应用场景math数学计算几何、物理模拟random生成随机数据游戏、抽样测试statistics统计分析回归分析、市场调研numpy数组与矩阵运算图像处理、机器学习pandas表格数据处理与分析金融分析、数据清洗一、基础数学库1.1mat
- Cursor 的 AI 模型:代码生成与理解的原理
drebander
AI编程Cursor
引言在当今的软件开发领域,人工智能(AI)正在迅速改变开发者的工作方式。Cursor作为一款智能编程助手,通过集成先进的AI模型,为开发者提供了强大的代码生成、补全和优化功能。Cursor的核心竞争力在于其AI模型的能力,这些模型不仅能够理解代码的上下文,还能生成高质量的代码建议。本文将深入探讨Cursor使用的AI模型(如GPT系列或其他定制模型),并解析这些模型如何理解代码上下文并生成高质量的
- AI对接之对话API对接指南
我码玄黄
AI探索AI工具教你一招人工智能AIAI对接前端
AI对接之对话API对接指南本系列AI的API对接均以DeepSeek为例,其他大模型的对接方式类似。在人工智能领域,对话系统是连接人与机器的重要桥梁。DeepSeekAPI提供了一个强大的对话补全功能,使得开发者能够轻松地将智能对话集成到自己的应用中。本文将详细介绍如何对接DeepSeek的对话补全API,并展示几种典型的使用形式。1.API概览DeepSeek的对话补全API通过一个POST请
- AI人工智能代理工作流 AI Agent WorkFlow:在物流与供应链中的应用
AI架构设计之禅
大数据AI人工智能AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:在物流与供应链中的应用1.背景介绍1.1物流与供应链行业面临的挑战物流与供应链行业是现代经济的重要组成部分,涉及原材料采购、产品生产、仓储配送、销售等多个环节。随着全球化进程加快,供应链日益复杂,企业面临着成本控制、效率提升、风险管理等诸多挑战。传统的物流与供应链管理模式已难以适应市场变化,亟需引入新技术和创新方法。1.2人工智能在物流供应链中
- DeepSeek-V3 技术报告
mingo_敏
LLM深度学习人工智能
1概述本文介绍了DeepSeek-V3,一个强大的混合专家(MoE)语言模型,总参数量为6710亿,每个token激活的参数量为370亿。为了实现高效的推理和经济高效的训练,DeepSeek-V3采用了多头潜在注意力(MLA)和DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分验证。此外,DeepSeek-V3率先采用了无辅助损失的负载均衡策略,并设定了多token预测训练目
- 替代传统汽车行业FTP传输方式,实现数字化重大转型
镭速
镭速FTP替代FTP升级网络
在当今快速发展的数字化时代,汽车行业的竞争日益激烈。为了在这个充满挑战的市场中保持竞争力,企业需要不断优化其内部流程和技术基础设施。其中,文件传输作为信息交流的重要环节,对企业的效率和安全性有着至关重要的影响。然而,传统的FTP(文件传输协议)传输方式在汽车行业中的应用正面临着前所未有的挑战。本文将探讨传统FTP传输方式在汽车行业中的局限性,并介绍镭速FTP替代升级方案如何帮助企业实现数字化的重大
- 强化学习在自动驾驶中的实现与挑战
Echo_Wish
人工智能前沿技术自动驾驶人工智能机器学习
强化学习在自动驾驶中的实现与挑战自动驾驶技术作为当今人工智能领域的前沿之一,正通过各种方式改变我们的出行方式。而强化学习(ReinforcementLearning,RL),作为机器学习的一大分支,在自动驾驶的实现中扮演了至关重要的角色。它通过模仿人类驾驶员的决策过程,为车辆提供动态、灵活的导航与控制能力。然而,强化学习在实际应用中并非一帆风顺,还面临着诸多技术和现实挑战。本文将从原理、实现与挑战
- AI:263-强化学习在自动驾驶领域的应用与前沿挑战
一键难忘
精通AI实战千例专栏合集自动驾驶汽车强化学习人工智能
强化学习在自动驾驶中的应用与挑战自动驾驶汽车是当前人工智能和机器学习的热门研究方向,而强化学习(ReinforcementLearning,RL)因其在复杂动态环境中的决策能力,成为推动自动驾驶技术的重要工具。本文将探讨强化学习在自动驾驶中的应用、面临的挑战,并提供一个简单的代码实例以展示如何在自动驾驶中应用强化学习。1.强化学习的基础概念强化学习是一种通过试错的方式来学习最佳策略的机器学习方法。
- 强化学习在自动驾驶技术中的应用与挑战
电气_空空
自动驾驶人工智能机器学习
摘要:围绕强化学习在自动驾驶领域的应用进行了多方面的概括和总结。对强化学习原理及发展历程进行了介绍;系统介绍了自动驾驶技术体系以及强化学习在自动驾驶领域的应用所需的基础;按不同的应用方向分别介绍了强化学习在自动驾驶领域中的应用案例;深入分析了现阶段强化学习在自动驾驶领域存在的挑战,并提出若干展望。关键词:强化学习;自动驾驶;人工智能近年来,人工智能在各个领域得到了广泛应用。其快速发展为智能交通系统
- 强化学习:在无人驾驶中的应用
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
强化学习:在无人驾驶中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着科技的飞速发展,无人驾驶技术逐渐成为汽车工业和人工智能领域的热点。无人驾驶汽车被认为是未来交通系统的重要组成部分,它能够提高道路安全性、缓解交通拥堵、降低环境污染等。然而,实现无人驾驶面临着诸多挑战,其中最为关键的是如何让汽车在复杂多变的交通环
- 基于强化学习的自动驾驶决策规划算法
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于强化学习的自动驾驶决策规划算法作者:禅与计算机程序设计艺术1.背景介绍自动驾驶技术是当前人工智能领域最受关注和投入的方向之一。自动驾驶汽车需要在复杂多变的交通环境中做出安全、舒适和高效的决策和行动。传统基于规则和模型的决策规划方法已经难以满足自动驾驶的需求。近年来,基于强化学习的决策规划算法越来越受到关注,它能够在复杂动态环境中学习出高效的决策策略。2.核心概念与联系强化学习是一种通过与环境的
- 原创prompt:员工加班助手
姚瑞南
prompt实战应用案例prompt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)#Role:员工加班填报助手##Profile:你是一个在公司内部帮助员工填报加班信息、审批的办公室助手,主要任务是通过友好且礼貌的引导员工对话填报加班方式来帮助员工完成加班信息填报
- 深入探讨:如何在Python中使用流式传输技术高效调用大型语言模型
m0_57781768
python语言模型microsoft
深入探讨:如何在Python中使用流式传输技术高效调用大型语言模型在现代人工智能应用中,大型语言模型(LargeLanguageModels,LLM)已经成为了强大的工具,能够生成高质量的自然语言文本,并且被广泛应用于各种任务中,如对话系统、文本生成、内容总结等。然而,如何更加高效地调用这些模型,特别是在实时交互的应用中,往往是开发者面临的挑战。流式传输(Streaming)技术提供了一种解决方案
- 从0到1:C++ 开启游戏开发奇幻之旅(二)
小周不想卷
艾思科蓝学术会议投稿c
目录游戏开发核心组件设计游戏循环游戏对象管理碰撞检测人工智能(AI)与物理引擎人工智能物理引擎性能优化技巧内存管理优化多线程处理实战案例:开发一个简单的2D射击游戏项目结构设计代码实现总结与展望游戏开发核心组件设计游戏循环游戏循环是游戏运行的核心机制,它就像是游戏的“心脏”,不断地跳动,驱动着游戏世界的运转。在游戏循环中,程序会不断地重复执行一系列的操作,包括处理用户输入、更新游戏状态、进行物理模
- 特征选择(机器学习)
赵孝正
机器学习算法机器学习人工智能
目录1.为什么需要特征选择2.常见的特征选择方法2.1过滤式(FilterMethods)小示例(用Python伪代码表达):2.2包裹式(WrapperMethods)小示例(RFE伪代码示例):2.3嵌入式(EmbeddedMethods)小示例(Lasso伪代码示例):3.实践建议4.小结1.为什么需要特征选择在机器学习任务中,经常会遇到以下问题:特征(变量)数量过多,导致计算量大、训练速度
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置