Wormholes 最短路判断有无负权值

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer,  FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively:  NM, and  W 
Lines 2.. M+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: a bidirectional path between  S and  E that requires  T seconds to traverse. Two fields might be connected by more than one path. 
Lines  M+2.. M+ W+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: A one way path from  S to  E that also moves the traveler back  T seconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2

3 3 1

1 2 2

1 3 4

2 3 1

3 1 3

3 2 1

1 2 3

2 3 4

3 1 8

Sample Output

NO

YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 1 #include<stdio.h>

 2 #include<string.h>

 3 #include<stdlib.h>

 4 

 5 const int EM = 10000;

 6 const int VM = 600;

 7 const int INF = 999999;

 8 struct node

 9 {

10     int u,v,w;

11 }map[EM];

12 

13 int cnt,dis[VM];

14 int n,m,k;

15 

16 void addedge(int au,int av,int aw)

17 {

18     map[cnt].u = au;

19     map[cnt].v = av;

20     map[cnt].w = aw;

21     cnt++;

22 }

23 

24 int Bellman_ford()

25 {

26     int flag ,i;

27     //初始化

28     for( i = 1; i <= n; i++)

29     {

30         dis[i] = INF;

31     }

32     dis[1] =0;

33     

34     for( i = 1; i <= n; i++)

35     {

36         flag = 0;

37         for(int j = 0; j < cnt; j++)

38         {

39             if(dis[map[j].v] > dis[map[j].u]+map[j].w)

40             {

41                 dis[map[j].v] = dis[map[j].u]+map[j].w;

42                 flag = 1;

43             }

44         }

45         if(flag== 0) break;

46     }

47     if(i == n+1) return 1;//若第n次还可以松弛说明存在负环

48     else return 0;

49 }

50 

51 int main()

52 {

53     int t,u,v,w,ans;

54     scanf("%d",&t);

55     while(t--)

56     {

57         cnt = 0;

58         scanf("%d %d %d",&n,&m,&k);

59         while(m--)

60         {

61             scanf("%d %d %d",&u,&v,&w);

62             //添加双向边

63             addedge(u,v,w);

64             addedge(v,u,w);

65         }

66         while(k--)

67         {

68             scanf("%d %d %d",&u,&v,&w);

69             //添加单向边

70             addedge(u,v,-w);

71         }

72         ans = Bellman_ford();

73         if(ans == 1)

74             printf("YES\n");

75         else printf("NO\n");

76     }

77     return 0;

78 }
View Code
 1 //spfa判断有无负环

 2 #include<stdio.h>

 3 #include<string.h>

 4 #include<stdlib.h>

 5 #include<iostream>

 6 #include<queue>

 7 using namespace std;

 8 

 9 const int MAX = 510;

10 const int INF = 999999;

11 int n,m,w;

12 int map[MAX][MAX];

13 queue<int>que;

14 int inque[MAX];

15 int vexcnt[MAX];

16 int dis[MAX];

17 

18 bool spfa()

19 {

20     memset(inque,0,sizeof(inque));

21     memset(vexcnt,0,sizeof(vexcnt));

22     for(int i = 1; i <= n; i++)

23         dis[i] = INF;

24     dis[1] = 0;

25     que.push(1);

26     inque[1] = 1;

27     vexcnt[1]++;

28     while(!que.empty())

29     {

30         int tmp = que.front();

31         que.pop();

32         inque[tmp] = 0;

33         for(int i = 1; i <= n; i++)

34         {

35             if(dis[tmp] < INF && dis[i] > dis[tmp] + map[tmp][i])

36             {

37                 dis[i] = dis[tmp] + map[tmp][i];

38                 if(inque[i] == 0)

39                 {

40                     inque[i] = 1;

41                     vexcnt[i]++;

42                     que.push(i);

43                     if(vexcnt[i] >= n)

44                     {

45                         return false;

46                     }

47                 }

48             }

49         }

50     }

51     return true;

52 }

53 int main()

54 {

55     int t;

56     int x,y,z;

57     scanf("%d",&t);

58     while(t--)

59     {

60         while(!que.empty())que.pop();

61         scanf("%d %d %d",&n,&m,&w);

62         for(int i = 1; i <= n; i++)

63             for(int j = 1; j <= n; j++)

64             {

65                 if(i == j) map[i][j] = 0;

66                 else map[i][j] = INF;

67             }

68         for(int i = 1; i <= m; i++)

69         {

70             scanf("%d %d %d",&x,&y,&z);

71             if(map[x][y] > z)

72             {

73                 map[x][y] = z;

74                 map[y][x] = z;

75             }

76         }

77         for(int i = 1; i <= w; i++)

78         {

79             scanf("%d %d %d",&x,&y,&z);

80             if(map[x][y] > -z)

81                 map[x][y] = -z;

82         }

83         if(spfa())

84             printf("NO\n");

85         else printf("YES\n");

86     }

87     return 0;

88 }
View Code

 

<Bellman-Ford算法>

Dijkstra算法无法判断负权回路,而负权回路的含义是,回路的权值和为负。若不为负,即便有负权的边,也可正确求出最短路径,如果遇到负权,则可以采用Bellman-Ford算法。
Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点 最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的 最短路径d[v]。
适用条件&范围
1. 单源最短路径(从源点s到其它所有顶点v);
2.有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);
3.边权可正可负(如有负权回路输出错误提示);
Bellman-Ford算法描述:
1,.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;
2.迭代求解:反复对边集E中的每条边进行 松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。
描述性证明:
首先指出,图的任意一条 最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。
其次,从源点s可达的所有顶点如果 存在 最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的 迭代 松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵 最短路径树的过程。
在对每条边进行1遍 松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的 最短路径;对每条边进行第2遍 松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为 最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。
每实施一次 松弛操作最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断 松弛,这里浪费了大量的时间,怎么 优化?单纯的优化是否可行?)
注意:上述只对正权图有效。如果存在负权不一定第i次就能确定最短路,且与边的顺序有关。
如果没有负权回路,由于 最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍 松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。
如果有负权回路,那么第 |v| 遍 松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。
 

你可能感兴趣的:(orm)