- 短期气候Python绘图——EOF(经验正交函数分解)大气环流基本状况
安载寿
python开发语言
一、要求掌握大气环流分型的基本方法--EOF(经验正交函数分解)大气环流基本状况;熟悉EOF方法和程序的应用,气象绘图;二、资料说明NCEP/NCAR1948-2008年(61年)的500百帕月平均高度场资料,资料范围为(900S-900N,00-3600E),网格距为2.50×2.50,纬向格点数为144,经向格点数为73,资料为GRD格式,资料从南到北、自西向东排列,每月为一个记录,按年逐月排
- 短期气候Python绘图——欧亚遥相关指数以及站点数据绘图
安载寿
python开发语言
一、要求计算EU(欧亚)遥相关指数,输出1月份该指数年际变化的时间序列;计算EU遥相关指数与同期环流场(500hPa高度场或海平面气压场)的相关系数;计算EU遥相关指数与同期我国气温的相关系数。二、资料说明(1)格点资料NCEP/NCAR1948-2012年(65年)的500百帕月平均高度场资料资料范围为(900S-900N,00-3600E)网格距为2.50×2.50,纬向格点数为144,经向格
- HDFS 在上传文件的时候,如果其中一个 DataNode 突然挂掉了怎么办? 思维导图 代码示例(java 架构)
用心去追梦
hdfsjava架构
当在HDFS中上传文件时,如果其中一个DataNode突然挂掉,HDFS有内置的机制来确保数据的完整性和可靠性。以下是详细的处理流程、Java架构代码示例以及创建思维导图的建议。HDFS上传文件时遇到DataNode故障的处理1.检测DataNode故障心跳机制:每个DataNode定期向NameNode发送心跳信号。如果NameNode在一段时间内没有收到某个DataNode的心跳,它会将该节点
- 神经架构搜索在大模型效率优化中的应用
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
神经架构搜索,大模型,效率优化,自动机器学习,深度学习1.背景介绍近年来,深度学习模型取得了令人瞩目的成就,在图像识别、自然语言处理、语音识别等领域展现出强大的能力。然而,随着模型规模的不断扩大,训练和部署这些大模型也带来了巨大的挑战。计算资源消耗巨大:大模型的训练需要大量的计算资源,例如高性能GPU和TPU,这导致训练成本高昂,难以普及。内存占用量大:大模型的参数量庞大,需要大量的内存进行存储和
- Python爬虫:从入门到实践
来恩1003
Python爬虫python爬虫开发语言
Python爬虫学习资料Python爬虫学习资料Python爬虫学习资料在当今数字化信息爆炸的时代,数据已成为企业和个人发展的重要资产。Python爬虫作为一种高效获取网络数据的工具,正逐渐被广大开发者所熟知和应用。无论是市场调研、学术研究,还是数据分析,Python爬虫都能发挥巨大作用。本文将带你从基础概念出发,逐步深入到爬虫的实战应用,助你掌握这一强大的数据获取技能。一、爬虫基础:开启数据获取
- 探索微信小程序开发之旅
来恩1003
微信小程序微信小程序小程序
微信小程序学习资料微信小程序学习资料微信小程序学习资料在移动互联网蓬勃发展的当下,微信小程序以其无需下载安装、触手可及的特性,成为众多开发者和企业的热门选择。无论是为了拓展业务渠道、提升用户体验,还是追求技术创新,学习微信小程序开发都能为你打开一扇充满机遇的大门。接下来,让我们一同踏上微信小程序的学习征程。一、基础搭建:开启小程序开发之门开发工具准备:微信官方提供了功能强大且易用的开发工具——微信
- Spring Boot教程之五十七:在 Apache Kafka 上发布 JSON 消息
潜洋
Java中级SpringBootspringbootapachekafka
SpringBoot|如何在ApacheKafka上发布JSON消息ApacheKafka是一个发布-订阅消息系统。消息队列允许您在进程、应用程序和服务器之间发送消息。在本文中,我们将了解如何在SpringBoot应用程序中向ApacheKafka发送JSON消息。为了了解如何创建SpringBoot项目,请参阅本文。JSON的全称是JavaScriptObjectNotation。JSON是一种
- 有用过kafka的延迟队列功能的人吗
xiamu_CDA
kafka分布式
有用过Kafka的延迟队列功能的人吗?在当今的数据处理和消息传递领域,ApacheKafka已经成为了一个不可或缺的工具。它以其高吞吐量、低延迟和可扩展性而闻名。然而,随着应用场景的多样化,Kafka的延迟队列功能逐渐进入了人们的视野。你有没有想过,在处理复杂业务逻辑时,Kafka的延迟队列功能能带来哪些优势?本文将深入探讨这一话题,并分享一些实际应用中的经验和最佳实践。什么是Kafka的延迟队列
- 机器学习——逻辑回归
口_天_光健
python机器学习逻辑回归
逻辑回归技术文档目录简介逻辑回归的基本概念逻辑回归的数学原理逻辑回归的实现步骤代码示例逻辑回归的应用逻辑回归的优化方法逻辑回归的局限性逻辑回归的扩展与变体逻辑回归与其他算法的对比总结简介逻辑回归(LogisticRegression)是一种广泛应用于分类问题的统计方法。尽管名字中有“回归”二字,但逻辑回归实际上是一种分类算法,主要用于二分类问题,但也可以通过扩展用于多分类问题。逻辑回归通过使用逻辑
- 卷积神经网络(CNN):深度学习中的核心模型
任义礼智信
深度学习cnn人工智能
引言卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是深度学习领域的一种重要模型,广泛应用于图像处理、计算机视觉、自然语言处理等多个领域。CNN凭借其卓越的特征提取能力和参数共享机制,已成为计算机视觉任务中最主流的算法之一。本文将深入探讨CNN的基本原理、结构组件、应用场景及其发展方向。CNN的基本原理CNN是一种特殊的前馈神经网络(FeedforwardNeura
- 【机器学习:十五、神经网络的编译和训练】
KeyPan
机器学习机器学习神经网络人工智能深度学习pytorchubuntulinux
1.TensorFlow实现代码TensorFlow是深度学习中最为广泛使用的框架之一,提供了灵活的接口来构建、编译和训练神经网络。以下是实现神经网络的一个完整代码示例,以“手写数字识别”为例:importtensorflowastffromtensorflow.kerasimportlayers,models#加载MNIST数据集(x_train,y_train),(x_test,y_test)
- 【机器学习:十六、其他的激活函数】
KeyPan
机器学习机器学习人工智能算法服务器运维ubuntu
1.Sigmoid激活函数的替代方案Sigmoid激活函数在神经网络中曾广泛使用,其数学公式为:σ(x)=11+e−x\sigma(x)=\frac{1}{1+e^{-x}}σ(x)=1+e−x1输出范围为(0,1),适合二分类问题。但随着深度学习的发展,Sigmoid函数逐渐被替代,主要原因包括:梯度消失问题:当输入绝对值较大时,梯度趋近于零,导致权重更新困难。非零中心问题:输出值始终为正,可能
- Linux驱动学习--DRM框架介绍及基于DRM框架的HDMI开发
文艺小少年
linuxandroidhdmi驱动程序drm
目录一、引言二、DRM框架介绍三、DRM框架的使用四、源码分析一、引言Android4开始,hdmi等视频输出框架开始由framebuffer想DRM迁移,今天我们就来简单分析下DRM框架二、DRM框架介绍DRM是一个内核级的设备驱动,具体的说是显卡驱动的一种架构源码位置因为Linuxkernel内部接口和数据结构可能随时发生变化,所以DRI模块要针对特定的内核版本进行编译。kernel2.6.2
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- 使用 Docker 在 Alpine Linux 下部署 Caddy 服务器
shelby_loo
服务器dockerlinux
简介在现代web开发中,选择合适的web服务器至关重要。Caddy是一个功能强大的现代化HTTP/2服务器,支持自动HTTPS,配置简单,适合开发和生产环境。Docker则为我们提供了一种轻量级的容器化技术,使得应用程序的部署和管理变得更加高效。AlpineLinux是一个轻量级的Linux发行版,以其小巧和安全著称,非常适合用于容器化环境。今天,我们将一起学习如何在AlpineLinux下通过D
- 当下是否入行AI ? 一场关于未来的赌注与机遇
dami_king
随笔人工智能
当下是否入行AI:一场关于未来的赌注与机遇在科技的浪潮中,人工智能(AI)无疑是最为汹涌的一波。它不仅改变了我们与机器互动的方式,还重塑了各行各业的面貌。面对这样的变革,许多人站在十字路口犹豫不决——现在进入AI领域还来得及吗?这个问题的答案,并非简单的“是”或“否”。今天,让我们一起深入探讨这个话题,看看对于想要投身AI的人来说,当下是不是一个好的时机。AI行业的现状与发展2024年,AI已经从
- Soc简介
IC开源世界
硬件工程
SoC即系统级芯片又称片上系统(SoC,SystemonChip)。SoC将系统的主要功能综合到一块芯片中,本质上是在做一种复杂的IC设计。SoC是集成电路设计和制造工艺发展的产物,它可以将整个系统集成在一个芯片上。SoC按用途可分为两种类型:一种是专用SoC芯片,是专用集成电路(ASIC)向系统级集成的自然发展;另一种是通用SoC芯片,将绝大部分部件,如CPU、DSP、RAM、I/O等集成在芯片
- 频域增强通道注意力机制EFCAM模型详解及代码复现
呆头鹅AI工作室
深度学习算法详解及代码复现深度学习人工智能神经网络condapython
背景与动机在深度学习领域,如何有效处理时间序列数据一直是一个重要的研究方向。近年来,频域分析技术在时间序列处理中展现出了巨大潜力,特别是离散余弦变换(DCT)因其能够高效捕捉低频信息并避免高频噪声干扰而受到广泛关注。FECAM模型的开发正是基于这一背景,旨在结合频域分析和通道注意力机制,以提高模型对时间序列数据的特征提取和表示能力。通过这种创新方法,FECAM模型能够更有效地捕捉时间序列中的关键特
- 《Python实现简易DDoS压力测试脚本:原理、代码与使用警示》
乐茵安全
python_studychrome前端python网络安全
DDoS测试脚本声明:本文所涉及代码仅供学习使用,任何人利用此造成的一切后果与本人无关源码import requestsimport threading# 目标URLtarget_url = "http://47.121.xxx.xxx/"# 发送请求的函数def send_request(): while True: try: response = re
- 求和——蓝桥杯
走啦小孩
c++算法蓝桥杯数据结构
1.求和题目描述小明对数位中含有2、0、1、92、0、1、9的数字很感兴趣,在11到4040中这样的数包括1、2、9、101、2、9、10至32、3932、39和4040,共2828个,他们的和是574574。请问,在11到20192019中,所有这样的数的和是多少?运行限制最大运行时间:1s最大运行内存:128M2.代码两个代码,第一个代码中加了布尔函数进行判断,有点多此一举了,但是可以学习一下
- Java设计模式之单例模式
倚-天-照-海
设计模式java设计模式单例模式
单例模式(SingletonPattern):确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例,这个类称为单例类,它提供全局访问的方法。单例模式是一种对象创建型模式。单例模式有三个要点:一是某个类只能有一个实例;二是它必须自行创建这个实例;三是它必须自行向整个系统提供这个实例。对单例的实现可以分为两大类——懒汉式和饿汉式,他们的区别在于:懒汉式:指全局的单例实例在第一次被使用时构建
- 黎曼流形优化知识点学习
cmgdxrz
学习
一、黎曼流形切空间被赋予一个光滑变化的内积的流形就是黎曼流形Riemannianmanifold。光滑变化的内积称为黎曼度量Riemannianmetric。二、线性空间,向量空间,矩阵空间(一)线性空间线性空间是一个抽象的数学概念,它是指一个集合,其中包含了元素和标量。这些元素之间可以进行加法运算和数乘运算,且仍得到元素。线性空间必须满足向量空间的所有条件,并且还需要满足以下条件:加法交换律:u
- 华为OD机试E卷 - 空栈压数(Java & Python& JS & C++ & C )
算法大师
最新华为OD机试python华为odjavajavascriptc语言c++华为od机考e卷
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看题目描述向一个空栈压入正整数,每当压入一个整数时,执行以下规则(设:栈顶至栈底整数依次编号为n1,n2,…,nx,其中n1为最新压入的整数)如果n1=n2,则n1、n2全部出栈,压入新数据m(m=2*n1)如果n1=n2+…+ny(y的范围为[3,x]),则n1,n2,…,ny全部出栈,压入新数据m(m=2*n1)。如果上述规
- PyTorch建模与应用:从深度学习到大模型
屿小夏
书籍推荐深度学习pytorch人工智能
文章目录一、内容简介二、值得一读1.从基础到深入,适合不同层次的读者2.丰富的实战案例3.全面的数据处理与模型构建三、适用人群1.AI技术初学者2.在校学生和从业者3.培训机构和高校教学四、总结一、内容简介《动手学PyTorch建模与应用:从深度学习到大模型》是一本从零基础上手深度学习和大模型的PyTorch实战指南。全书共11章,内容涵盖了从深度学习的基础概念到大语言模型的应用。第1章介绍了深度
- 遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
盼小辉丶
遗传算法与深度学习实战深度学习kerascnn
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络0.前言1.卷积神经网络基本概念1.1卷积1.2步幅1.3填充1.4激活函数1.5池化2.使用Keras构建卷积神经网络3.CNN层的问题4.模型泛化小结系列链接0.前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,
- Python网络爬虫入门教程:从抓取数据到应用实现
冷夜雨.
python
引言在大数据时代,信息就是力量。各种网站每天产生着海量的数据,这些数据中蕴藏着巨大的商业价值和研究价值。如何快速、自动化地从互联网上获取这些信息,成为了数据科学、人工智能、市场分析等领域中的一个重要课题。Python,作为一门易于学习且功能强大的编程语言,其丰富的库和工具使得构建网络爬虫变得非常简单。网络爬虫(WebScraper)是一种自动化程序,用来从网页中提取信息。无论是用于数据分析、竞争对
- 【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图方法:基于原型引导的领域感知渐进表示学习(一)
努力学习的大大
论文推荐深度学习人工智能机器学习神经网络变化检测
【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图方法:基于原型引导的领域感知渐进表示学习(一)【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图方法:基于原型引导的领域感知渐进表示学习(一)文章目录【深度学习地学应用|滑坡制图、变化检测、多目标域适应、感知学习、深度学习】跨域大尺度遥感影像滑坡制图
- 【vLLM 学习】安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM是一个Python库,包含预编译的C++和CUDA(12.1)二进制文件。依赖环境操作系统:LinuxPython:3.8-3.12GPU:计算能力7.0或更高(例如V100、T4、RTX20xx、A100、L
- 提升CSS动画学习效率的利器——ScriptEcho
前端
引言在现代网页设计中,CSS动画的重要性不言而喻。它不仅能够为用户提供更为生动的视觉体验,还能有效地吸引用户的注意力。例如,按钮的悬停效果、页面的加载动画等,都是通过CSS动画实现的。然而,尽管CSS动画的应用场景广泛,但对于零基础的学习者来说,学习其中的技巧和知识常常面临挑战。本文将介绍如何通过ScriptEcho这一强大的工具来提升CSS动画的学习效率,让每位学习者都能轻松入门。CSS动画基础
- C语言学习——指针与数组,指针与函数,指针与堆空间
许白掰
c语言学习算法
目录一、指针与数组1.导入问题2.深入理解数组地址(inta[]={1,2,3,4,5};)3.指针与数组的等价用法4.字符串拾遗5.指针移动组合拳:intv=*p++6.小结二、指针与函数1.导入问题2.深入函数之旅3.函数指针(Typefunc(Type1a,Type2b))4.函数指针参数5.再论数组参数6.小结三、指针与堆空间1.再论内存空间2.堆空间的本质3.预备知识——void*4.堆
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&