所谓信息,是指信号随时间的变化。
奈奎斯特定理已经证明。 为了从抽样信号中无失真的再现原信号,当原信号(为频带有限的模拟信号)带宽为BHz时,最小抽样速率,应该为每秒2B个样值。即抽样时间间隔=1/2B秒。这些样值包含了原信号的全部信息。
具体证明过程如下:
以下的信号以频带有限的信号。设其带宽为BHz。即理想情况下,频域中,超过f=B就绝对没有任何频率分量(实际波形中,超过BHz后,频率分量幅度迅速下降,也可视为信号带宽=B)。
1,原信号转换成抽样点时,即抽样速率为多少
对周期信号f(t)抽样时,只要抽样速率f0>=2B,则抽样不会损害其信息含量。1/2B为抽样间隔。
设周期脉冲信号为S(t),脉冲幅度为1,宽度为τ,周期T=1/f0
则抽样后信号为fs(t)=f(t)S(t)。
f(t),S(t)都可以展开成傅立叶级数(公式1),根据傅立叶频谱搬移原理, 可以得到fs(t)的傅立叶变换为
每一项的中心位于抽样频率的倍数点上。所以:对f(t)抽样的效果是使其频谱搬移到抽样频率的所有谐波上。频谱沿原先的频率线对称的分布。
而对于非周期函数f(t)抽样,也有类似效果。
频谱如下:
当抽样速率下降时,f0及所有谐波都会互相靠拢,则上图中各频谱分量会重叠在一起,比如中心位于f0的分量F(W+W0) 会同中心位于原点的 未偏移项F(W)相混,这样就不能从Fs(W)中分出F(W),也就不可能从fs(t)中恢复f(t)。
这种因抽样间隔太宽而引起频谱重叠并导致失真的现象称为混淆。
而开始相混的极限频率,可从上图中看出
f0-B=B,即f0=2B。
这就是 奈奎斯特抽样速率。
解释:上面说明了,抽样的过程即 周期脉冲信号(抽样信号)与原信号(信息信号) 相乘,产生的结果信号:
在频域上,会保留原信号的所有信息(即其频域分量会全部保留),但
频谱搬移到抽样频率的所有谐波上。
即:以 抽样信号的频谱各频率点为中心,每个频率点的上下边带都会保留全部的 原信号频谱 信息。
因为上下边带的存在,所以从数学上看,要避免频谱分量重叠的办法只有让 抽样信号的频谱间隔为2B,即△f=2B,它也是抽样信号的基波频率(见
基波的定义
部分),即时域信号的速率.
如果抽样速率较小,则抽样信号的带宽变小,谐波的频率分量会更紧密的靠在一起。则很容易发生, 原信号抽样后,频谱分量容易重叠在一起。
如抽样速率较大,则抽样信号谐波的频率分量间隔会增大,如上图中的间隔。原信号抽样后,不易发生重叠。
抽样速率不需要越大越好。因为那样带宽太大。并且只需要 一个频率分量的上下边带 就可完全恢复原信号,
比如
上图中fc、2fc左右边带就是无用的,在反傅立叶变换时只需要 0点左右的频谱分量作为输入数据即可。
2,
从抽样点可以得到周期信号 的证明过程如下:
注:抽样点可以是 非周期性 的取得,比如每隔几秒开始抽样也可以。
已证明:每秒任何2B个独立样值就可完全表示一个频带有限的信号。或:完全规定一个T秒长间隔上的信号,只需要任何2BT个单独的(独立的)信息样值。
证明过程如下:
设T秒时间上频带有限信号为f(t),(即非周期信号),它可以展开成以T为周期的傅立叶级数,由于频带有限,则傅立叶级数中的项数是有限的,即谐波是有限的,也即频谱中频率点是有限的。
由于
,因为B是f(t)的最高频率分量,则Wn=2piB(当n最大时),此时2piB=2pi*n/T,得出n=BT
所以:
n的最大值是BT。
基波C0是直流项,仅改变f(t)的平均电平,不提供任何信息(因为信息表示信号随时间的变化)。
由于频谱的对称性,所以傅立叶系数共有2BT个,即
频谱上的频率分量共有2BT个。
解释:
1,抽样点的个数*2 =频域中 频率点 的个数(含正频率与负频率)
2,当T=1s时,只需要2B个频谱分量即可恢复原信号,即:抽样后信号,从频域变换到时域后的信息 与 抽样前信号一样。
3,
抽样信号的解调
即:如何从2BT个样值中恢复原信号f(t)。
通过傅立叶变换可以证明,在
各个抽样点(时间点分别为:1/2B,2/2B...n/2B)给定信号f(t)时,对它们分别FFT之后可以得到相应的傅立叶系数Cn或F(w)。如下:
而对Cn或F(w)进行傅立叶反变换,可以得到所有可能时间上的f(t)
解释:反变换之前是频域,没有时间参数。反变换之后则是时域的连续信号。
这里的方法是
:从 频域的离散频谱 反变换后生成 时域的连续信号。而频域信号来自于时域的抽样值。
所以,连续信号f(t)先抽样,再FFT,然后再IFFT可以得到原时域信号f(t)。
上述过程已经证明:用 时间相隔1/2B 的各个抽样点上的f(t)信号 就足以确定所有时间的f(t)。
上述过程已经证明,让信号样值通过一个带宽为B hz的理想低通滤波器,可以再现原信号f(t)。这就是解调。
即:
N个采样点,经过FFT之后,频谱上得到N个频率点的幅值,反变换到时域得到连续函数f(t)。
采样速率越高或采样点数越多,相当于从频域反变换到时域时得到的谐波越多,叠加后得到的f(t)更像原信号。
比如:原信号带宽500Hz,时域的采样频率则应为1024Hz(则1秒内得到的采样点为1024个),那么根据采样点变换到频域后最大带宽应该为1024(解释:因为发生了频谱搬移。)
1秒时间的采样,得到1024个采样点,FFT变换到频域后得到1024个频率点,横坐标的频率的最大值是采样频率1024Hz,从小到大分别是:0Hz,1Hz,2Hz....1024Hz。
而2秒时间的采样,得到2048个采样点,FFT变换到频域后得到2048个采样点,横坐标的频率的最大值仍是采样频率1024Hz,从小到大分别是:0Hz,0.5Hz,1Hz,1.5Hz,2Hz...1024Hz。频率点之间的间隔是0.5hz。因为
,最大带宽W与采样时间无关,总是恒定值,当频谱上频率点n的次数增加时,频率点之间间隔只能缩短。
所以:在采样率确定的情况下:
采样时间越长,频域的频率点越多,即频率分辨率(即:两个频率点之间的间隔)越高。恢复到时域后谐波更多。
结论:
频域频率分辨率要精确到xHz,则需要采样长度为1/x秒的信号,再做FFT变换到频域。
实际应用中,对实时处理的要求较高,可采用:
采样比较短时间的信号,然后在后面补充一定量的0作为采样点,使其长度达到需要的点数。这也可以提高频率分辨率。
如果想用时分复用的方式来同时传送多路信号,在每路信号的抽样间隔中,可以用来传送其它信号的抽样点。