Deep Learning 学习随记(五)深度网络--续

前面记到了深度网络这一章。当时觉得练习应该挺简单的,用不了多少时间,结果训练时间真够长的...途中debug的时候还手贱的clear了一下,又得从头开始运行。不过最终还是调试成功了,sigh~

前一篇博文讲了深度网络的一些基本知识,这次讲义中的练习还是针对MNIST手写库,主要步骤是训练两个自编码器,然后进行softmax回归,最后再整体进行一次微调。

训练自编码器以及softmax回归都是利用前面已经写好的代码。微调部分的代码其实就是一次反向传播。

以下就是代码:

主程序部分:

stackedAEExercise.m

%  For the purpose of completing the assignment, you do not need to

%  change the code in this file. 

%

%%======================================================================

%% STEP 0: Here we provide the relevant parameters values that will

%  allow your sparse autoencoder to get good filters; you do not need to 

%  change the parameters below.

DISPLAY = true;

inputSize = 28 * 28;

numClasses = 10;

hiddenSizeL1 = 200;    % Layer 1 Hidden Size

hiddenSizeL2 = 200;    % Layer 2 Hidden Size

sparsityParam = 0.1;   % desired average activation of the hidden units.

                       % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",

                       %  in the lecture notes). 

lambda = 3e-3;         % weight decay parameter       

beta = 3;              % weight of sparsity penalty term       



%%======================================================================

%% STEP 1: Load data from the MNIST database

%

%  This loads our training data from the MNIST database files.



% Load MNIST database files

trainData = loadMNISTImages('mnist/train-images-idx3-ubyte');

trainLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte');



trainLabels(trainLabels == 0) = 10; % Remap 0 to 10 since our labels need to start from 1



%%======================================================================

%% STEP 2: Train the first sparse autoencoder

%  This trains the first sparse autoencoder on the unlabelled STL training

%  images.

%  If you've correctly implemented sparseAutoencoderCost.m, you don't need

%  to change anything here.





%  Randomly initialize the parameters

sae1Theta = initializeParameters(hiddenSizeL1, inputSize);



%% ---------------------- YOUR CODE HERE  ---------------------------------

%  Instructions: Train the first layer sparse autoencoder, this layer has

%                an hidden size of "hiddenSizeL1"

%                You should store the optimal parameters in sae1OptTheta



%  Use minFunc to minimize the function

addpath minFunc/

options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost

                          % function. Generally, for minFunc to work, you

                          % need a function pointer with two outputs: the

                          % function value and the gradient. In our problem,

                          % sparseAutoencoderCost.m satisfies this.

options.maxIter = 400;      % Maximum number of iterations of L-BFGS to run 

options.display = 'on';





[sae1optTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...

                                    inputSize, hiddenSizeL1, ...

                                    lambda, sparsityParam, ...

                                    beta, trainData), ...

                                sae1Theta, options);



%-------------------------------------------------------------------------





%======================================================================

% STEP 2: Train the second sparse autoencoder

 

%This trains the second sparse autoencoder on the first autoencoder

 %featurse.

 %If you've correctly implemented sparseAutoencoderCost.m, you don't need

 %to change anything here.



[sae1Features] = feedForwardAutoencoder(sae1optTheta, hiddenSizeL1, ...

                                        inputSize, trainData);



%  Randomly initialize the parameters

sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1);



%% ---------------------- YOUR CODE HERE  ---------------------------------

%  Instructions: Train the second layer sparse autoencoder, this layer has

%                an hidden size of "hiddenSizeL2" and an inputsize of

%                "hiddenSizeL1"

%

%                You should store the optimal parameters in sae2OptTheta



[sae2opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...

                                    hiddenSizeL1, hiddenSizeL2, ...

                                    lambda, sparsityParam, ...

                                    beta, sae1Features), ...

                                sae2Theta, options);



%-------------------------------------------------------------------------



%======================================================================

%% STEP 3: Train the softmax classifier

%  This trains the sparse autoencoder on the second autoencoder features.

%  If you've correctly implemented softmaxCost.m, you don't need

%  to change anything here.



[sae2Features] = feedForwardAutoencoder(sae2opttheta, hiddenSizeL2, ...

                                        hiddenSizeL1, sae1Features);



%  Randomly initialize the parameters

saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, 1);





%% ---------------------- YOUR CODE HERE  ---------------------------------

%  Instructions: Train the softmax classifier, the classifier takes in

%                input of dimension "hiddenSizeL2" corresponding to the

%                hidden layer size of the 2nd layer.

%

%                You should store the optimal parameters in saeSoftmaxOptTheta 

%

%  NOTE: If you used softmaxTrain to complete this part of the exercise,

%        set saeSoftmaxOptTheta = softmaxModel.optTheta(:);



options.maxIter = 100;

softmax_lambda = 1e-4;



numLabels = 10;

softmaxModel = softmaxTrain(hiddenSizeL2, numLabels, softmax_lambda, ...

                            sae2Features, trainLabels, options);

saeSoftmaxOptTheta = softmaxModel.optTheta(:);



%-------------------------------------------------------------------------







%======================================================================

%% STEP 5: Finetune softmax model



% Implement the stackedAECost to give the combined cost of the whole model

% then run this cell.



% Initialize the stack using the parameters learned

inputSize = 28*28;

stack = cell(2,1);

stack{1}.w = reshape(sae1optTheta(1:hiddenSizeL1*inputSize), ...

                     hiddenSizeL1, inputSize);

stack{1}.b = sae1optTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);

stack{2}.w = reshape(sae2opttheta(1:hiddenSizeL2*hiddenSizeL1), ...

                     hiddenSizeL2, hiddenSizeL1);

stack{2}.b = sae2opttheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2);



% Initialize the parameters for the deep model

[stackparams, netconfig] = stack2params(stack);

stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ];



%% ---------------------- YOUR CODE HERE  ---------------------------------

%  Instructions: Train the deep network, hidden size here refers to the '

%                dimension of the input to the classifier, which corresponds 

%                to "hiddenSizeL2".

%

%

[stackedAEOptTheta, cost] = minFunc( @(p) stackedAECost(p, inputSize, hiddenSizeL2, ...

                                              numClasses, netconfig, ...

                                              lambda, trainData, trainLabels), ...

                                          stackedAETheta,options);

                                      

% -------------------------------------------------------------------------







%%======================================================================

%% STEP 6: Test 

%  Instructions: You will need to complete the code in stackedAEPredict.m

%                before running this part of the code

%



% Get labelled test images

% Note that we apply the same kind of preprocessing as the training set

testData = loadMNISTImages('mnist/t10k-images-idx3-ubyte');

testLabels = loadMNISTLabels('mnist/t10k-labels-idx1-ubyte');



testLabels(testLabels == 0) = 10; % Remap 0 to 10



[pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...

                          numClasses, netconfig, testData);



acc = mean(testLabels(:) == pred(:));

fprintf('Before Finetuning Test Accuracy: %0.3f%%\n', acc * 100);



[pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...

                          numClasses, netconfig, testData);



acc = mean(testLabels(:) == pred(:));

fprintf('After Finetuning Test Accuracy: %0.3f%%\n', acc * 100);



% Accuracy is the proportion of correctly classified images

% The results for our implementation were:

%

% Before Finetuning Test Accuracy: 87.7%

% After Finetuning Test Accuracy:  97.6%

%

% If your values are too low (accuracy less than 95%), you should check 

% your code for errors, and make sure you are training on the 

% entire data set of 60000 28x28 training images 

% (unless you modified the loading code, this should be the case)

 微调部分的代价函数:

stackedAECost.m

function [ cost, grad ] = stackedAECost(theta, inputSize, hiddenSize, ...

                                              numClasses, netconfig, ...

                                              lambda, data, labels)

                                         

% stackedAECost: Takes a trained softmaxTheta and a training data set with labels,

% and returns cost and gradient using a stacked autoencoder model. Used for

% finetuning.

                                         

% theta: trained weights from the autoencoder

% visibleSize: the number of input units

% hiddenSize:  the number of hidden units *at the 2nd layer*

% numClasses:  the number of categories

% netconfig:   the network configuration of the stack

% lambda:      the weight regularization penalty

% data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 

% labels: A vector containing labels, where labels(i) is the label for the

% i-th training example





%% Unroll softmaxTheta parameter



% We first extract the part which compute the softmax gradient

softmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);



% Extract out the "stack"

stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);



% You will need to compute the following gradients

softmaxThetaGrad = zeros(size(softmaxTheta));

stackgrad = cell(size(stack));

for d = 1:numel(stack)

    stackgrad{d}.w = zeros(size(stack{d}.w));

    stackgrad{d}.b = zeros(size(stack{d}.b));

end



cost = 0; % You need to compute this



% You might find these variables useful

M = size(data, 2);

groundTruth = full(sparse(labels, 1:M, 1));





%% --------------------------- YOUR CODE HERE -----------------------------

%  Instructions: Compute the cost function and gradient vector for 

%                the stacked autoencoder.

%

%                You are given a stack variable which is a cell-array of

%                the weights and biases for every layer. In particular, you

%                can refer to the weights of Layer d, using stack{d}.w and

%                the biases using stack{d}.b . To get the total number of

%                layers, you can use numel(stack).

%

%                The last layer of the network is connected to the softmax

%                classification layer, softmaxTheta.

%

%                You should compute the gradients for the softmaxTheta,

%                storing that in softmaxThetaGrad. Similarly, you should

%                compute the gradients for each layer in the stack, storing

%                the gradients in stackgrad{d}.w and stackgrad{d}.b

%                Note that the size of the matrices in stackgrad should

%                match exactly that of the size of the matrices in stack.

%

%----------先计算a和z----------------

d = numel(stack);          %stack的深度

n = d+1;                   %网络层数

a = cell(n,1);

z = cell(n,1);

a{1} = data;               %a{1}设成输入数据

for l = 2:n                %给a{2,...n}和z{2,,...n}赋值

    z{l} = stack{l-1}.w * a{l-1} + repmat(stack{l-1}.b,[1,size(a{l-1},2)]);

    a{l} = sigmoid(z{l});

end

%------------------------------------



%-------------计算softmax的代价函数和梯度函数-------------

Ma = softmaxTheta * a{n};

NorM = bsxfun(@minus, Ma, max(Ma, [], 1));  %归一化,每列减去此列的最大值,使得M的每个元素不至于太大。

ExpM = exp(NorM);

P = bsxfun(@rdivide,ExpM,sum(ExpM));      %概率

cost = -1/M*(groundTruth(:)'*log(P(:)))+lambda/2*(softmaxTheta(:)'*softmaxTheta(:)); %代价函数

softmaxThetaGrad =  -1/M*((groundTruth-P)*a{n}') + lambda*softmaxTheta;       %梯度

%--------------------------------------------------------



%--------------计算每一层的delta---------------------

delta = cell(n);

delta{n} = -softmaxTheta'*(groundTruth-P).*(a{n}).*(1-a{n});          %可以参照前面讲义BP算法的实现

for l = n-1:-1:1

    delta{l} = stack{l}.w' * delta{l+1}.*(a{l}).*(1-a{l});

end

%----------------------------------------------------



%--------------计算每一层的w和b的梯度-----------------

for l = n-1:-1:1

    stackgrad{l}.w = (1/M)*delta{l+1}*a{l}';

    stackgrad{l}.b = (1/M)*sum(delta{l+1},2);

end

%----------------------------------------------------



% -------------------------------------------------------------------------



%% Roll gradient vector

grad = [softmaxThetaGrad(:) ; stack2params(stackgrad)];



end





% You might find this useful

function sigm = sigmoid(x)

    sigm = 1 ./ (1 + exp(-x));

end

预测函数:

stackedAEPredict.m

 

function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data)

                                         

% stackedAEPredict: Takes a trained theta and a test data set,

% and returns the predicted labels for each example.

                                         

% theta: trained weights from the autoencoder

% visibleSize: the number of input units

% hiddenSize:  the number of hidden units *at the 2nd layer*

% numClasses:  the number of categories

% data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 



% Your code should produce the prediction matrix 

% pred, where pred(i) is argmax_c P(y(c) | x(i)).

 

%% Unroll theta parameter



% We first extract the part which compute the softmax gradient

softmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);



% Extract out the "stack"

stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);



%% ---------- YOUR CODE HERE --------------------------------------

%  Instructions: Compute pred using theta assuming that the labels start 

%                from 1.

%

%----------先计算a和z----------------

d = numel(stack);          %stack的深度

n = d+1;                   %网络层数

a = cell(n,1);

z = cell(n,1);

a{1} = data;               %a{1}设成输入数据

for l = 2:n                %给a{2,...n}和z{2,,...n}赋值

    z{l} = stack{l-1}.w * a{l-1} + repmat(stack{l-1}.b,[1,size(a{l-1},2)]);

    a{l} = sigmoid(z{l});

end

%-------------------------------------

M = softmaxTheta * a{n};

[Y,pred] = max(M,[],1);



% -----------------------------------------------------------



end





% You might find this useful

function sigm = sigmoid(x)

    sigm = 1 ./ (1 + exp(-x));

end

 

最后结果:

跟讲义以及程序注释中有点差别,特别是没有微调的结果,讲义中提到是不到百分之九十的,这里算出来是百分之九十四左右:

但是微调后的结果基本是一样的。 

 

PS:讲义地址:http://deeplearning.stanford.edu/wiki/index.php/Exercise:_Implement_deep_networks_for_digit_classification

 

你可能感兴趣的:(学习)