红黑树

参考资料:

  • http://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html
  • 算法导论第13章
  • http://blog.csdn.net/skylinesky/article/details/6610950

代码:(我添上了toString,以及改写了main中的测试代码)

package trees;



/*************************************************************************

 *  Compilation:  javac RedBlackBST.java

 *  Execution:    java RedBlackBST < input.txt

 *  Dependencies: StdIn.java System.out.java  

 *  Data files:   http://algs4.cs.princeton.edu/33balanced/tinyST.txt  

 *    

 *  A symbol table implemented using a left-leaning red-black BST.

 *  This is the 2-3 version.

 *

 *  Note: commented out assertions because DrJava now enables assertions

 *        by default.

 *

 *  % more tinyST.txt

 *  S E A R C H E X A M P L E

 *  

 *  % java RedBlackBST < tinyST.txt

 *  A 8

 *  C 4

 *  E 12

 *  H 5

 *  L 11

 *  M 9

 *  P 10

 *  R 3

 *  S 0

 *  X 7

 *

 *************************************************************************/



import java.util.Arrays;

import java.util.Collections;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import java.util.NoSuchElementException;

import java.util.Queue;

import java.util.Random;



public class RedBlackBST<Key extends Comparable<Key>, Value> {



    private static final boolean RED   = true;

    private static final boolean BLACK = false;



    private Node root;     // root of the BST



    // BST helper node data type

    private class Node {

        private Key key;           // key

        private Value val;         // associated data

        private Node left, right;  // links to left and right subtrees

        private boolean color;     // color of parent link

        private int N;             // subtree count



        public Node(Key key, Value val, boolean color, int N) {

            this.key = key;

            this.val = val;

            this.color = color;

            this.N = N;

        }

        

        @Override

        public String toString() {

            return "["+key+","+val+","+(color==RED?"R":"B")+"]";

        }

    }



   /*************************************************************************

    *  Node helper methods

    *************************************************************************/

    // is node x red; false if x is null ?

    private boolean isRed(Node x) {

        if (x == null) return false;

        return (x.color == RED);

    }



    // number of node in subtree rooted at x; 0 if x is null

    private int size(Node x) {

        if (x == null) return 0;

        return x.N;

    } 





   /*************************************************************************

    *  Size methods

    *************************************************************************/



    // return number of key-value pairs in this symbol table

    public int size() { return size(root); }



    // is this symbol table empty?

    public boolean isEmpty() {

        return root == null;

    }



   /*************************************************************************

    *  Standard BST search

    *************************************************************************/



    // value associated with the given key; null if no such key

    public Value get(Key key) { return get(root, key); }



    // value associated with the given key in subtree rooted at x; null if no such key

    private Value get(Node x, Key key) {

        while (x != null) {

            int cmp = key.compareTo(x.key);

            if      (cmp < 0) x = x.left;

            else if (cmp > 0) x = x.right;

            else              return x.val;

        }

        return null;

    }



    // is there a key-value pair with the given key?

    public boolean contains(Key key) {

        return (get(key) != null);

    }



    // is there a key-value pair with the given key in the subtree rooted at x?

    private boolean contains(Node x, Key key) {

        return (get(x, key) != null);

    }



   /*************************************************************************

    *  Red-black insertion

    *************************************************************************/



    // insert the key-value pair; overwrite the old value with the new value

    // if the key is already present

    public void put(Key key, Value val) {

        root = put(root, key, val);

        root.color = BLACK;

        // assert check();

    }



    // insert the key-value pair in the subtree rooted at h

    private Node put(Node h, Key key, Value val) { 

        if (h == null) return new Node(key, val, RED, 1);



        int cmp = key.compareTo(h.key);

        if      (cmp < 0) h.left  = put(h.left,  key, val); 

        else if (cmp > 0) h.right = put(h.right, key, val); 

        else              h.val   = val;



        // fix-up any right-leaning links

        if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);

        if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);

        if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);

        h.N = size(h.left) + size(h.right) + 1;



        return h;

    }



   /*************************************************************************

    *  Red-black deletion

    *************************************************************************/



    // delete the key-value pair with the minimum key

    public void deleteMin() {

        if (isEmpty()) throw new NoSuchElementException("BST underflow");



        // if both children of root are black, set root to red

        if (!isRed(root.left) && !isRed(root.right))

            root.color = RED;



        root = deleteMin(root);

        if (!isEmpty()) root.color = BLACK;

        // assert check();

    }



    // delete the key-value pair with the minimum key rooted at h

    private Node deleteMin(Node h) { 

        if (h.left == null)

            return null;



        if (!isRed(h.left) && !isRed(h.left.left))

            h = moveRedLeft(h);



        h.left = deleteMin(h.left);

        return balance(h);

    }





    // delete the key-value pair with the maximum key

    public void deleteMax() {

        if (isEmpty()) throw new NoSuchElementException("BST underflow");



        // if both children of root are black, set root to red

        if (!isRed(root.left) && !isRed(root.right))

            root.color = RED;



        root = deleteMax(root);

        if (!isEmpty()) root.color = BLACK;

        // assert check();

    }



    // delete the key-value pair with the maximum key rooted at h

    private Node deleteMax(Node h) { 

        if (isRed(h.left))

            h = rotateRight(h);



        if (h.right == null)

            return null;



        if (!isRed(h.right) && !isRed(h.right.left))

            h = moveRedRight(h);



        h.right = deleteMax(h.right);



        return balance(h);

    }



    // delete the key-value pair with the given key

    public void delete(Key key) { 

        if (!contains(key)) {

            System.err.println("symbol table does not contain " + key);

            return;

        }



        // if both children of root are black, set root to red

        if (!isRed(root.left) && !isRed(root.right))

            root.color = RED;



        root = delete(root, key);

        if (!isEmpty()) root.color = BLACK;

        // assert check();

    }



    // delete the key-value pair with the given key rooted at h

    private Node delete(Node h, Key key) { 

        // assert contains(h, key);



        if (key.compareTo(h.key) < 0)  {

            if (!isRed(h.left) && !isRed(h.left.left))

                h = moveRedLeft(h);

            h.left = delete(h.left, key);

        }

        else {

            if (isRed(h.left))

                h = rotateRight(h);

            if (key.compareTo(h.key) == 0 && (h.right == null))

                return null;

            if (!isRed(h.right) && !isRed(h.right.left))

                h = moveRedRight(h);

            if (key.compareTo(h.key) == 0) {

                Node x = min(h.right);

                h.key = x.key;

                h.val = x.val;

                // h.val = get(h.right, min(h.right).key);

                // h.key = min(h.right).key;

                h.right = deleteMin(h.right);

            }

            else h.right = delete(h.right, key);

        }

        return balance(h);

    }



   /*************************************************************************

    *  red-black tree helper functions

    *************************************************************************/



    // make a left-leaning link lean to the right

    private Node rotateRight(Node h) {

        // assert (h != null) && isRed(h.left);

        Node x = h.left;

        h.left = x.right;

        x.right = h;

        x.color = x.right.color;

        x.right.color = RED;

        x.N = h.N;

        h.N = size(h.left) + size(h.right) + 1;

        return x;

    }



    // make a right-leaning link lean to the left

    private Node rotateLeft(Node h) {

        // assert (h != null) && isRed(h.right);

        Node x = h.right;

        h.right = x.left;

        x.left = h;

        x.color = x.left.color;

        x.left.color = RED;

        x.N = h.N;

        h.N = size(h.left) + size(h.right) + 1;

        return x;

    }



    // flip the colors of a node and its two children

    private void flipColors(Node h) {

        // h must have opposite color of its two children

        // assert (h != null) && (h.left != null) && (h.right != null);

        // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))

        //     || (isRed(h)  && !isRed(h.left) && !isRed(h.right));

        h.color = !h.color;

        h.left.color = !h.left.color;

        h.right.color = !h.right.color;

    }



    // Assuming that h is red and both h.left and h.left.left

    // are black, make h.left or one of its children red.

    private Node moveRedLeft(Node h) {

        // assert (h != null);

        // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);



        flipColors(h);

        if (isRed(h.right.left)) { 

            h.right = rotateRight(h.right);

            h = rotateLeft(h);

        }

        return h;

    }



    // Assuming that h is red and both h.right and h.right.left

    // are black, make h.right or one of its children red.

    private Node moveRedRight(Node h) {

        // assert (h != null);

        // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);

        flipColors(h);

        if (isRed(h.left.left)) { 

            h = rotateRight(h);

        }

        return h;

    }



    // restore red-black tree invariant

    private Node balance(Node h) {

        // assert (h != null);



        if (isRed(h.right))                      h = rotateLeft(h);

        if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);

        if (isRed(h.left) && isRed(h.right))     flipColors(h);



        h.N = size(h.left) + size(h.right) + 1;

        return h;

    }





   /*************************************************************************

    *  Utility functions

    *************************************************************************/



    // height of tree (1-node tree has height 0)

    public int height() { return height(root); }

    private int height(Node x) {

        if (x == null) return -1;

        return 1 + Math.max(height(x.left), height(x.right));

    }



   /*************************************************************************

    *  Ordered symbol table methods.

    *************************************************************************/



    // the smallest key; null if no such key

    public Key min() {

        if (isEmpty()) return null;

        return min(root).key;

    } 



    // the smallest key in subtree rooted at x; null if no such key

    private Node min(Node x) { 

        // assert x != null;

        if (x.left == null) return x; 

        else                return min(x.left); 

    } 



    // the largest key; null if no such key

    public Key max() {

        if (isEmpty()) return null;

        return max(root).key;

    } 



    // the largest key in the subtree rooted at x; null if no such key

    private Node max(Node x) { 

        // assert x != null;

        if (x.right == null) return x; 

        else                 return max(x.right); 

    } 



    // the largest key less than or equal to the given key

    public Key floor(Key key) {

        Node x = floor(root, key);

        if (x == null) return null;

        else           return x.key;

    }    



    // the largest key in the subtree rooted at x less than or equal to the given key

    private Node floor(Node x, Key key) {

        if (x == null) return null;

        int cmp = key.compareTo(x.key);

        if (cmp == 0) return x;

        if (cmp < 0)  return floor(x.left, key);

        Node t = floor(x.right, key);

        if (t != null) return t; 

        else           return x;

    }



    // the smallest key greater than or equal to the given key

    public Key ceiling(Key key) {  

        Node x = ceiling(root, key);

        if (x == null) return null;

        else           return x.key;  

    }



    // the smallest key in the subtree rooted at x greater than or equal to the given key

    private Node ceiling(Node x, Key key) {  

        if (x == null) return null;

        int cmp = key.compareTo(x.key);

        if (cmp == 0) return x;

        if (cmp > 0)  return ceiling(x.right, key);

        Node t = ceiling(x.left, key);

        if (t != null) return t; 

        else           return x;

    }





    // the key of rank k

    public Key select(int k) {

        if (k < 0 || k >= size())  return null;

        Node x = select(root, k);

        return x.key;

    }



    // the key of rank k in the subtree rooted at x

    private Node select(Node x, int k) {

        // assert x != null;

        // assert k >= 0 && k < size(x);

        int t = size(x.left); 

        if      (t > k) return select(x.left,  k); 

        else if (t < k) return select(x.right, k-t-1); 

        else            return x; 

    } 



    // number of keys less than key

    public int rank(Key key) {

        return rank(key, root);

    } 



    // number of keys less than key in the subtree rooted at x

    private int rank(Key key, Node x) {

        if (x == null) return 0; 

        int cmp = key.compareTo(x.key); 

        if      (cmp < 0) return rank(key, x.left); 

        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); 

        else              return size(x.left); 

    } 



   /***********************************************************************

    *  Range count and range search.

    ***********************************************************************/



    // all of the keys, as an Iterable

    public Iterable<Key> keys() {

        return keys(min(), max());

    }



    // the keys between lo and hi, as an Iterable

    public Iterable<Key> keys(Key lo, Key hi) {

        Queue<Key> queue = new LinkedList<Key>();

        // if (isEmpty() || lo.compareTo(hi) > 0) return queue;

        keys(root, queue, lo, hi);

        return queue;

    } 



    // add the keys between lo and hi in the subtree rooted at x

    // to the queue

    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) { 

        if (x == null) return; 

        int cmplo = lo.compareTo(x.key); 

        int cmphi = hi.compareTo(x.key); 

        if (cmplo < 0) keys(x.left, queue, lo, hi); 

        if (cmplo <= 0 && cmphi >= 0) queue.offer(x.key); 

        if (cmphi > 0) keys(x.right, queue, lo, hi); 

    } 



    // number keys between lo and hi

    public int size(Key lo, Key hi) {

        if (lo.compareTo(hi) > 0) return 0;

        if (contains(hi)) return rank(hi) - rank(lo) + 1;

        else              return rank(hi) - rank(lo);

    }





   /*************************************************************************

    *  Check integrity of red-black BST data structure

    *************************************************************************/

    private boolean check() {

        if (!isBST())            System.out.println("Not in symmetric order");

        if (!isSizeConsistent()) System.out.println("Subtree counts not consistent");

        if (!isRankConsistent()) System.out.println("Ranks not consistent");

        if (!is23())             System.out.println("Not a 2-3 tree");

        if (!isBalanced())       System.out.println("Not balanced");

        return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();

    }



    // does this binary tree satisfy symmetric order?

    // Note: this test also ensures that data structure is a binary tree since order is strict

    private boolean isBST() {

        return isBST(root, null, null);

    }



    // is the tree rooted at x a BST with all keys strictly between min and max

    // (if min or max is null, treat as empty constraint)

    // Credit: Bob Dondero's elegant solution

    private boolean isBST(Node x, Key min, Key max) {

        if (x == null) return true;

        if (min != null && x.key.compareTo(min) <= 0) return false;

        if (max != null && x.key.compareTo(max) >= 0) return false;

        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);

    } 



    // are the size fields correct?

    private boolean isSizeConsistent() { return isSizeConsistent(root); }

    private boolean isSizeConsistent(Node x) {

        if (x == null) return true;

        if (x.N != size(x.left) + size(x.right) + 1) return false;

        return isSizeConsistent(x.left) && isSizeConsistent(x.right);

    } 



    // check that ranks are consistent

    private boolean isRankConsistent() {

        for (int i = 0; i < size(); i++)

            if (i != rank(select(i))) return false;

        for (Key key : keys())

            if (key.compareTo(select(rank(key))) != 0) return false;

        return true;

    }



    // Does the tree have no red right links, and at most one (left)

    // red links in a row on any path?

    private boolean is23() { return is23(root); }

    private boolean is23(Node x) {

        if (x == null) return true;

        if (isRed(x.right)) return false;

        if (x != root && isRed(x) && isRed(x.left))

            return false;

        return is23(x.left) && is23(x.right);

    } 



    // do all paths from root to leaf have same number of black edges?

    private boolean isBalanced() { 

        int black = 0;     // number of black links on path from root to min

        Node x = root;

        while (x != null) {

            if (!isRed(x)) black++;

            x = x.left;

        }

        return isBalanced(root, black);

    }



    // does every path from the root to a leaf have the given number of black links?

    private boolean isBalanced(Node x, int black) {

        if (x == null) return black == 0;

        if (!isRed(x)) black--;

        return isBalanced(x.left, black) && isBalanced(x.right, black);

    } 

    

    /**

     * in-order traverse

     * */

    @Override

    public String toString() {

        StringBuilder builder = new StringBuilder("[");

        inOrderTraverse(root, builder);

        builder.append("]");

        return builder.toString();

    }

    // helper for toString

    private void inOrderTraverse(Node node, StringBuilder builder) {

        if (node != null) {

            inOrderTraverse(node.left, builder);

            builder.append(node+",");

            inOrderTraverse(node.right, builder);

        }

    }





   /*****************************************************************************

    *  Test client

    *****************************************************************************/

    public static void main(String[] args) { 

        RedBlackBST<String, Integer> rbTree = new RedBlackBST<String, Integer>();

        List<String> keys = new LinkedList<>();

        List<Integer> vals = new LinkedList<>();

        int upperBound = 50;

        Random random = new Random();

        for (int i = 0; i < 6; ++i) {

            int val = random.nextInt(upperBound);

            keys.add(Integer.toString(val));

            vals.add(val);

        }

        

        System.out.println("----put----");

        

        for (int i = 0; i < keys.size(); i++) {

            rbTree.put(keys.get(i), vals.get(i));

            System.out.println(rbTree);

        }

        

        System.out.println("----get----");

        

        Collections.shuffle(keys);

        for (int i = 0; i < keys.size(); i++) {

            System.out.println(

                    rbTree.get(keys.get(i)));

        }

        

        System.out.println("----delete----");

        

        Collections.shuffle(keys);

        for (int i = 0; i < keys.size(); i++) {

            System.out.println(rbTree);

            rbTree.delete(keys.get(i));

        }

        

    }

}

 

你可能感兴趣的:(红黑树)