在以前使用hadoop的时候因为mahout里面很多都要求输入文件时序列文件,所以涉及到把文本文件转换为序列文件或者序列文件转为文本文件(因为当时要分析mahout的源码,所以就要看到它的输入文件是什么,文本比较好看其内容)。一般这个有两种做法,其一:按照《hadoop权威指南》上面的方面直接读出序列文件然后写入一个文本;其二,编写一个job任务,直接设置输出文件的格式,这样也可以把序列文件读成文本(个人一般采用这样方法)。时隔好久,今天又重新试了下,居然不行了?,比如,我要编写一个把文本转为序列文件的java程序如下:
package mahout.fansy.canopy.transformdata; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.mahout.common.AbstractJob; import org.apache.mahout.math.RandomAccessSparseVector; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; public class Text2VectorWritable extends AbstractJob{ @Override public int run(String[] arg0) throws Exception { addInputOption(); addOutputOption(); if (parseArguments(arg0) == null) { return -1; } Path input=getInputPath(); Path output=getOutputPath(); Configuration conf=getConf(); Job job=new Job(conf,"text2vectorWritable with input:"+input.getName()); // job.setInputFormatClass(SequenceFileInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setMapperClass(Text2VectorWritableMapper.class); job.setMapOutputKeyClass(Writable.class); job.setMapOutputValueClass(VectorWritable.class); job.setNumReduceTasks(0); job.setJarByClass(Text2VectorWritable.class); FileInputFormat.addInputPath(job, input); SequenceFileOutputFormat.setOutputPath(job, output); if (!job.waitForCompletion(true)) { throw new InterruptedException("Canopy Job failed processing " + input); } return 0; } public static class Text2VectorWritableMapper extends Mapper<Writable,Text,Writable,VectorWritable>{ public void map(Writable key,Text value,Context context)throws IOException,InterruptedException{ String[] str=value.toString().split(","); Vector vector=new RandomAccessSparseVector(str.length); for(int i=0;i<str.length;i++){ vector.set(i, Double.parseDouble(str[i])); } VectorWritable va=new VectorWritable(vector); context.write(key, va); } } }
这样在运行的时候老是提示说 我的Map的value的类型不是Text,不管我设置为什么类型都会是这样的情况。后来我就想会不会是map的输出时Text的格式?,然后我就把上面的程序加入了Reducer,如下:
package mahout.fansy.canopy.transformdata; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.mahout.common.AbstractJob; import org.apache.mahout.math.RandomAccessSparseVector; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; public class Text2VectorWritableCopy extends AbstractJob{ @Override public int run(String[] arg0) throws Exception { addInputOption(); addOutputOption(); if (parseArguments(arg0) == null) { return -1; } Path input=getInputPath(); Path output=getOutputPath(); Configuration conf=getConf(); Job job=new Job(conf,"text2vectorWritableCopy with input:"+input.getName()); // job.setInputFormatClass(SequenceFileInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setMapperClass(Text2VectorWritableMapper.class); job.setMapOutputKeyClass(LongWritable.class); job.setMapOutputValueClass(VectorWritable.class); job.setReducerClass(Text2VectorWritableReducer.class); job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(VectorWritable.class); job.setJarByClass(Text2VectorWritableCopy.class); FileInputFormat.addInputPath(job, input); SequenceFileOutputFormat.setOutputPath(job, output); if (!job.waitForCompletion(true)) { throw new InterruptedException("Canopy Job failed processing " + input); } return 0; } public static class Text2VectorWritableMapper extends Mapper<LongWritable,Text,LongWritable,VectorWritable>{ public void map(LongWritable key,Text value,Context context)throws IOException,InterruptedException{ String[] str=value.toString().split(","); Vector vector=new RandomAccessSparseVector(str.length); for(int i=0;i<str.length;i++){ vector.set(i, Double.parseDouble(str[i])); } VectorWritable va=new VectorWritable(vector); context.write(key, va); } } public static class Text2VectorWritableReducer extends Reducer<LongWritable,VectorWritable,LongWritable,VectorWritable>{ public void reduce(LongWritable key,Iterable<VectorWritable> values,Context context)throws IOException,InterruptedException{ for(VectorWritable v:values){ context.write(key, v); } } } }
然后在运行,就可以了。
不过关于map的输出是否一定是text格式的,还有待论证。
分享,快乐,成长
转载请注明出处:http://blog.csdn.net/fansy1990