Tarjan的学习笔记 求割边求割点

博主图论比较弱,搜了模版也不会用。。。

所以决心学习下tarjan算法。

割点和割边的概念不在赘述,tarjan能在线性时间复杂度内求出割边。

重要的概念:时间戟,就是一个全局变量clock记录访问结点的时间。一个无向图dfs会形成一个森林,当图只有一个连通分量时,就只有一棵树。

由于在无向图中,除了树边,其他都是反向边。可以画个图感受一下,可以反证的,如果有其他类型的边,那么dfs先沿着那些边跑图的,那么那些边就不存在。

如果结点是树根,那么它是割点的充要条件就是它有两个子结点。

定理

对于其他结点,如果他的子结点的反向边没有指向它的祖先的,那么它就是割点。证明很明显,因为无向图是没有横跨子树的边的。

 

具体判断的时候借助时间戟,定义low(u)为u和其后代所能返回最早祖先的的dfn值,那么定理就可以等价的转化为low(v)>=pre(u)。而且如果v的后代只能返回自己,那么删除(u,v)的一条边就可以让图分连通,那么就找到了割边(桥)。

伪代码

int dfs(int u,int fa) 返回u的low值, fa是判断是不是树边的二次访问
{
  记录时间戟并初始化u的low值

  跑图{
  如果子节点v没访问过{
  dfs(v)并返回后代low值 
  用后代low值更新u的low值    
  如果 后代的low值>=pre       //根据要求的是割边还是割点替换判断条件

    那么u是割点           //用数组记录,因为一个割点,条件可能不只成立一次
  }否则 如果是反向边         // 一.要满足v的时间戟小于u的,二.v不是u的父节点(是无向图的边的二次访问)

     {
       用反向边更新u的low值 
     }
  }

  用数组记录low u

  返回 low u
}

对于树根可以特判,可以通过对代码的小改动来实现,做法是记录子结点数量child,初始调用时fa赋值-1,加一个判断fa<0且child == 1时iscut(u) = false

 这个不能跑重边

void tarjan(int u,int fa)

{

    dfn[u] = low[u] = ++clock;

    for(int i = head[i]; ~i ; i = nxt[i]){

        int v = to[i];

        if(!dfn[v]){

            tarjan(v,u);

            low[u] = min(low[u],low[v]);

            if(low[v] > dfn[u]){

                ans = min(ans,wei[i])

            }

        }else if(v != fa) {

            low[u] = min(low[u],dfn[v]);

        }

    }

}

 

 

 

有重边的要用以下技巧

如果是用前向星存正反两条边是相邻并且奇偶性一定是不一样的,那么可以利用异或的开关性,来判断是不是树边if(i==(id^1))continue;//不从i对应的边到父节点  

你可能感兴趣的:(学习笔记)