- python中session的使用
白桃提拉米苏
使用场景:当接口之间有cookie数据之间的传递的情况下为了确保接口之间cookie数据传递,一定要使用同一个session对象接口返回的cookie数据,存储在session对象中#1.创建session对象session=requests.session()#2.使用session对象,实现之后所有的接口请求session.get()session.post()session.put()举例#
- halcon的Blob分析方法
斯人已去忆犹在
计算机视觉人工智能图像处理
阈值分割法图像分割常用方法就是阈值分割法,它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤。阈值分割法是一种传统的最常用的图像分割方法,特别适用于目标和背景占据不同灰度级范围的图像。阈值分割是一种按图像像素灰度幅度进行分割的方法,把图像的灰度分成不同的等级,然后用设置灰度门限(阈值)的方法确定有意义的区域或要分割物体的边界。阈值分割的优点是计算简单、运算效率较高、速度快。阈值分割的几个难
- 用户实操 | GBase 8a MPP Cluster慢SQL分析排查和优化方法
GBASE数据库
数据库GBASE南大通用GBASE
本期供稿|中国农业银行研发中心蔡鹍鹏01排查和优化方法SQL任务历史性能对比分析:通过开启GBase8a的audit_log审计日志,可以连续收集周期性任务的执行时间,通过对比相同SQL任务历史执行时长可以判定相同任务SQL长周期内的执行耗时趋势,通过对比发现执行性能异常情况,并进行针对性的分析。如,相同SQL任务在一定周期内执行时间逐渐变长,则需要结合表内数据量变化趋势、SQL任务类型需要访问全
- GBase 8a数据库多并发insert性能缓慢的优化
GBASE数据库
数据库国产数据库GBaseGBASE南大通用
原文链接:https://www.gbase.cn/community/post/4847更多精彩内容尽在南大通用GBase技术社区,南大通用致力于成为用户最信赖的数据库产品供应商。多并发insert缓慢优化场景分析在业务上或者数据迁移时,经常会出现对同一张表进行多并发的insertvalues操作,GBase8a虽然支持标准的sql插入方式,但同一般的关系型数据库对比,8a的强项在于大事务和大数
- 30.4:Python如何安装Pandas库? (课程共4100字)
小兔子平安
Python完整学习全解答pythonpandas开发语言
课程概述(课程共4100字)①安装Pandas库打开命令提示符或终端窗口,输入以下命令来安装Pandas:当安装完成后,可以使用以下命令来验证Pandas是否已正确安装:②数据处理和分析读写数据数据清洗和预处理数据分组和聚合数据可视化③Python学习的深入讨论Python的应用领域Python的优点和缺点学习Python的建议学习Python的挑战课程总结课程概述Python是一种功能强大的编程
- 基于 GBase 数据库的海量数据处理与性能优化
big crab
数据库oracle
一、引言随着大数据时代的到来,海量数据的存储和高效处理成为各行业的核心需求。GBase系列数据库(包括GBase8a、GBase8s和GBase8c)以其强大的性能、灵活的存储架构以及高效的查询优化功能,成为处理大规模数据的理想选择。本文将从GBase数据库的特性出发,探讨如何在实际应用中进行海量数据的高效处理,同时提供相关代码示例,帮助开发者更好地理解和应用GBase数据库。二、GBase数据库
- 分析投资策略数据
Young_Zn_Cu
投资策略
投资策略分析(在实习最后一周,当然要再多学一点金融相关知识啦,于是就有了这篇文章,以下均出于个人对投资策略的浅薄见解,欢迎大家提出建议)任务:分析私募排排网上的数据,并根据不同的策略进行分析,写出报告由于本人之前对投资部分了解较少,所以名词解释会占相当大一部分篇幅,大家可以直接移步后面部分!私募投资投资策略分析数据名词解释投资策略名词解释股票策略债券策略期货及衍生品策略多资产策略组合基金对筛选出来
- python画二维矩阵图_基于python 二维数组及画图的实例详解
weixin_39785400
python画二维矩阵图
1、二维数组取值注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型#二维数组importnumpyasnplist1=[[1.73,1.68,1.71,1.89,1.78],[54.4,59.2,63.6,88.4,68.7]]list3=[1.73,1.68,1.71,1.89,1.78]list4=[54.4,59.2,63.6,88.4,68.7]list
- gbase导入sql文件_GBase数据库——常用命令
weixin_39706561
gbase导入sql文件
1数据库操作与维护1.1数据库启停[root@OMMB-66-V10-001~]#servicegcwarestopStoppingGCMonitsuccess!SignalingGCRECOVER(gcrecover)toterminate:[OK]Waitingforgcrecoverservicestounload:.....[OK]SignalingGCSYNC(gc_sync_serve
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- java web 项目中封装的下拉列表小组件:实现下拉列表使用者前后端0行代码 ...
weixin_34383618
java前端后端ViewUI
导读:主要从4个方面来阐述,1:背景;2:思路;3:代码实现;4:使用一:封装背景像easyui之类的纯前端组件,也有下拉列表组件,但是使用的时候,每个下拉列表,要配一个URL,以及设置URL反回来的值和select的text,和value的对应关系,这有2个问题:一使用者必须知道URL,二,如果页面有10个下拉表表,要请求后台10次,肯定影响性能,而我想要的是使用者只要申明用哪个数据字典就行了,
- IDEA接入GPT王炸秘籍,开发分析界面与ChatGPT直接无缝衔接
数行天下
AI赋能intellij-ideagptchatgptpythonjava
大家好,我是数行天下,普通中间群体是凭借技术或业务在各行各业打工的重要群体,是AI技术的实践和推动者,个体的数字化程度越高就越能在百年未有之变局的AI时代赢得先机。各行各业数据分析、系统开发人员,科研领域研究人员,设计师,及各单位文字工作者等,谁能快速学习、加快效率,产出的内容更优质,在内卷化日益严重的环境中就更有竞争力。由于各种限制,大部分人无法有效使用GPT,即使费力注册成功也因为科学上网时间
- dialog element 删掉标题_ElementUI 销毁Dialog数据(简单粗暴)
鸿宇太子哥
dialogelement删掉标题
在使用element开发通过之中使用Dialog弹窗创建数据或者数据回显在经常不过了。而且数据创建和数据编辑正常都是使用同一组件。出现的问题:title="提示弹窗":visible.sync="dialogVisible"width="30%"destroy-on-close>使用dialog提供的属性destroy-on-close也并不能实现实时的dialog销毁,进行创建和编辑数据正常的切
- matlab 延迟算子,时间序列分析-----2---时间序列预处理
这块必被安排
matlab延迟算子
既然有了序列,那怎么拿来分析呢?时间序列分析方法分为描述性时序分析和统计时序分析。1、描述性时序分析通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。2、统计时序分析(1)频域分析方法原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动发展过程:1)早期的频
- 了解SQL Server不同版本(如Express、Standard、Enterprise)的功能差异和适用场景。
web15117360223
面试学习路线阿里巴巴express大数据数据库
一、SQLServerExpress版本(一)功能特点数据库大小限制:SQLServerExpress版本数据库的最大大小限制为10GB。这对于小型应用程序、个人项目或者初学者学习和开发简单的数据库应用是足够的。例如,一个小型的学生成绩管理系统,用于记录班级学生的成绩、课程信息等,其数据量通常不会超过这个限制。资源使用限制:该版本使用的内存限制为1GB,处理器核心数也有限制。这使得它在资源占用方面
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 记GBase8a一次简单的典型sql优化
GBase技术大咖
GBase8a数据库sql性能优化
原文地址:https://www.gbase.cn/community/post/3549某客户反映一条业务测试sql查询缓慢(3节点集群),百万级数据量用时6-8s,不满足小于1秒的业务需求!由于客户刚使用8a不久,希望远程进行优化演示。客户sql也比较简单,为两表关联分页查询,sql如下:SELECT*FROMAAAAa,BBBBbWHEREa.AAC001_JY=to_char(b.AAC0
- OpenWebUI,RAG+外部知识库+AI写文的开源应用
m0_74824780
人工智能开源
引言自从去年AI火起来之后,很多人便热衷于寻找适合自用的AI开源项目,把各家大模型API接入到自己的AI程序里,便可以通过AI辅助完成一系列日常任务,比如内容翻译/润色/总结/撰写、格式转换、数据分类、代码分析、角色扮演等等。一般情况下,大模型依靠自身训练数据便能够完成的任务质量偏高,像翻译总结、格式转换之类,市面上所有的AI程序基本都能够满足这一点需求;但是需要结合外部资料/超长上文信息/实时信
- 本地部署 DeepSeek:环境准备 + 详细步骤 + 高级部署方案 + 可视化工具集成 + 故障排除手册 + 性能优化建议
Katie。
人工智能技术发展aideepseek人工智能人工智能大模型
前言随着人工智能技术的迅猛发展,大语言模型(LLM)在多个行业中的应用日益广泛,从自然语言处理、内容生成到智能客服、医疗诊断等领域,AI正在深刻改变传统的工作方式和业务流程。DeepSeek作为一家新兴的AI公司,凭借其高效的AI模型和开源的优势,迅速在竞争激烈的AI市场中脱颖而出。其模型不仅在性能上表现出色,还通过开源策略吸引了大量开发者和企业的关注,形成了一个活跃的社区生态。然而,随着AI技术
- 基于iNeuOS工业互联网平台的板材实时质检系统
iNeuOS工业互联网
iNeuOS工业互联网人工智能物联网
1.项目背景刨花板生产线由于原料、生产工艺等原因,会有一些产品板面出现颤纹、漏砂、胶斑、胶块、大刨花、粉尘斑、板面划痕和油污等缺陷。表面缺陷会降低板材强度、影响板材外观和二次加工,给企业带来经济损失。目前针对刨花板的瑕疵识别工作主要以人工检测为主,缺陷种类繁多和视觉疲劳导致漏检率和误检率较高,极大限制了工厂的生产效率和产品质量。同时,工厂现有刨花板产线质检环节无法积累生产过程数据、无法形成有效数据
- linux下共享内存和消息队列实现多进程间数据收发
hsy12342611
linuxlinuxexecve
linux下进程通信的方式有很多,共享内存,消息队列,管道等。共享内存可以传输大量数据,但是多个进程同时读取共享内存就会出现脏读,可以借助消息队列实现多进程消息发送和接收。这种组合方式在实际开发中应用还是很多的,接下来就看一下。目录1.共享内存操作api(1)创建共享内存(2)挂载共享内存到当前进程(3)取消挂载(4)共享内存控制函数-可以删除2.消息队列操作api(1)创建消息附列(2)往消息队
- 深入探讨:CME期货CBOT高频合约历史行情数据分析方法
hightick
外盘期货高频历史行情数据集数据分析数据挖掘金融python数据库
深入探讨:CME期货CBOT高频合约历史行情数据分析方法为了促进学习和研究,我们在此分享一部分匿名处理的外盘期货高频历史行情数据集。外盘期货分钟高频历史行情数据链接:https://pan.baidu.com/s/19zhe1CCpDM56amDKO2nMwQ?pwd=4wpq提取码:4wpq请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。交易量与价格关系分析交易量与价格之间的关系
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- GBase 8a慢SQL优化案例-2 通过分析函数改写不等值关联排序取值
dudulang8088
sql数据库数据仓库
某气象现场一条查询语句,大数据场景下,单个机构查询耗时5分钟以上,需要分析,SQL语句如下:SELECTt.station_no,t.collect_time_stamp,t.r2020,t.topFROM(SELECTt1.station_no,t1.collect_time_stamp,t1.r2020,(SELECTCOUNT(*)+1FROM(SELECTstation_no,--站点编号
- 【PCIe XDMA开发】XDMA与MIG位宽一致性要求
RunningCamel
PCIeFPGAPCIeXDMA
在基于FPGA的PCIeXDMA与MIG(MemoryInterfaceGenerator)协同设计中,位宽一致性对传输效率有重要影响,但具体实现需结合系统架构和性能需求综合考虑。一、位宽一致性的必要性数据路径对齐要求XDMA的AXI接口位宽(如128/256/512位)需与MIG的物理接口位宽保持一致15。若两者不一致,需插入位宽转换模块(如AXIDataWidthConverter),这会引入
- 数字内容体验未来趋势:五大平台横向对比与深度解析
清风徐徐de来
其他
内容概要当前,企业数字化转型的核心战场正逐步向数字内容体验的精细化运营转移。随着用户行为碎片化与需求多元化趋势加剧,AI驱动的智能推荐系统、基于数据决策的动态优化能力,以及跨渠道的品牌一致性维护,已成为衡量内容平台竞争力的三大核心维度。本文将围绕这三大支柱,通过横向对比主流平台的技术架构与落地实践,揭示未来数字内容体验的演进方向。首先,AI驱动不仅改变了内容分发的效率,更通过深度学习算法实现用户行
- 数据驱动业务增长,E-MapReduce 真实案例解析
Anna_Tong
mapreduce大数据云计算数据分析阿里云实时计算数据驱动
在大数据时代,数据已经成为企业核心竞争力的关键因素之一。无论是电商、金融、物流还是制造业,企业都在探索如何更高效地处理、分析和利用海量数据,以实现精准决策、优化运营并提升业务增长。然而,面对PB级甚至EB级的数据规模,传统的本地大数据计算架构往往难以满足性能和成本的要求。如何在保证计算效率的同时降低运维成本,成为企业数据战略中的关键挑战。阿里云E-MapReduce(EMR)作为一款云原生的大数据
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- 共享内存的数据结构 ——循环队列+信息量 ——互斥锁、多进程的消费者模型 源码模型 测试代码 C++
sevenysq
数据结构c++centoslinux
前言:简单来说,共享内存不能自动扩展,申请多少就是多少,而且只能用C++内置的数据类型。也不能用STL容器,例如vector会自动扩展,容易造成内存泄漏,越界等问题。移动语义也不能用。要想实现多进程的生产/消费者模型只能采用循环队列。循环队列类值得一提的是这里面头尾指针的移动算法:(指针+1)取最大长度的余数。其他都很简单。#include#include#include#include#incl
- GBase 数据库的高性能架构与优化实践
big crab
数据库架构
引言随着信息技术的快速发展,数据库作为支撑各行各业数据存储和处理的核心技术之一,承担着越来越重要的角色。在现代企业中,大数据量、复杂查询和高并发处理已成为普遍需求。GBase数据库作为国内领先的数据库产品之一,提供了卓越的性能和灵活的架构设计,能够高效处理复杂的事务、分析查询和海量数据。本文将探讨GBase数据库的高性能架构,并结合实际案例展示其优化实践。一、GBase数据库架构概述GBase数据
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt