采用BFS,代码如下:(判断是否在字典中需要遍历每个位置,同时遍历26中可能有点不优雅)
# include
# include
# include
# include
# include
# include
using namespace std;
int main(){
int n;
cin >> n;
string src, des, s;
cin >> src >> des;
unordered_set dic;
for(int i=0; i> s;
dic.insert(s);
}
queue q;
q.push(src);
unordered_map mp;
mp[src] = 1;
while(!q.empty()){
string s = q.front(); q.pop();
int cnt = mp[s];
// BFS
for(int i=0; i
这题和找可达路径的那题不同,因为这题可能存在环,不处理会陷入死循环。所以我们需要标记节点,看是否是已经访问过的,刚好可以复用本来就得用来求解节点是否可达的标记数组。本题需要判断 1节点 是否能到所有节点,那么就没有必要回溯去撤销操作了,只要将遍历过的节点都标记上。而搜索路径就需要回溯,不然路径就会混叠在一起。
DFS代码如下:
# include
# include
# include
using namespace std;
void dfs(vector> &graph, vector &visited, int node){
for(auto nxt : graph[node]){
if(visited[nxt]==false){
visited[nxt] = true;
dfs(graph, visited, nxt);
}
}
}
int main(){
int n, k;
cin >> n >> k;
vector> graph(n+1);
while(k--){
int s, t;
cin >> s >> t;
graph[s].push_back(t);
}
vector visited(n+1, false);
visited[1] = true;
dfs(graph, visited, 1);
for(int i=1; i<=n; ++i){
if(visited[i]==false){
cout << -1 << endl;
return 0;
}
}
cout << 1 << endl;
return 0;
}
BFS版本的代码如下:
# include
# include
# include
# include
using namespace std;
void bfs(vector> &graph, vector &visited, int node){
queue q;
q.push(node);
while(!q.empty()){
int cur = q.front();
q.pop();
for(auto nxt : graph[cur]){
if(visited[nxt]==false){
visited[nxt] = true;
q.push(nxt);
}
}
}
}
int main(){
int n, k;
cin >> n >> k;
vector> graph(n+1);
while(k--){
int s, t;
cin >> s >> t;
graph[s].push_back(t);
}
vector visited(n+1, false);
visited[1] = true;
bfs(graph, visited, 1);
for(int i=1; i<=n; ++i){
if(visited[i]==false){
cout << -1 << endl;
return 0;
}
}
cout << 1 << endl;
return 0;
}
周长是由边组成的,什么是能构成周长的边?陆地与水域接壤的部分。所以可以通过查看陆地是否存在水域(超出边界也是水域),每存在一个水域+1,表示一条有效的边,能给周长+1。代码如下:
# include
# include
using namespace std;
int main(){
int n, m;
cin >> n >> m;
vector> graph(n, vector(m));
for(int i=0; i> graph[i][j];
int ans = 0;
vector> dirs = {{1, 0}, {-1, 0}, {0, -1}, {0, 1}};
for(int i=0; i=n || y<0 || y>=m || graph[x][y]==0)
++ans;
}
}
}
}
cout << ans << endl;
return 0;
}