卡尔曼滤波简介之算法实现代码

 转自:http://www.cnblogs.com/jason-jiang/archive/2007/01/13/619643.html

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。


现设线性时变系统的离散状态防城和观测方程为:


X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)


Y(k) = H(k)·X(k)+N(k)


其中


X(k)和Y(k)分别是k时刻的状态矢量和观测矢量


F(k,k-1)为状态转移矩阵


U(k)为k时刻动态噪声


T(k,k-1)为系统控制矩阵


H(k)为k时刻观测矩阵


N(k)为k时刻观测噪声


则卡尔曼滤波的算法流程为:



  1. 预估计X(k)^= F(k,k-1)·X(k-1) 
  2. 计算预估计协方差矩阵
    C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
    Q(k) = U(k)×U(k)'
     
  3. 计算卡尔曼增益矩阵
    K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
    R(k) = N(k)×N(k)'
     
  4. 更新估计
    X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]
     
  5. 计算更新后估计协防差矩阵
    C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'
     
  6. X(k+1) = X(k)~
    C(k+1) = C(k)~
    重复以上步骤

其c语言实现代码如下:

#include  " stdlib.h "
  #include 
" rinv.c "
  
int  lman(n,m,k,f,q,r,h,y,x,p,g)
  
int  n,m,k;
  
double  f[],q[],r[],h[],y[],x[],p[],g[];
  
int i,j,kk,ii,l,jj,js;
    
double *e,*a,*b;
    e
=malloc(m*m*sizeof(double));
    l
=m;
    
if (l<n) l=n;
    a
=malloc(l*l*sizeof(double));
    b
=malloc(l*l*sizeof(double));
    
for (i=0; i<=n-1; i++)
      
for (j=0; j<=n-1; j++)
        
{ ii=i*l+j; a[ii]=0.0;
          
for (kk=0; kk<=n-1; kk++)
            a[ii]
=a[ii]+p[i*n+kk]*f[j*n+kk];
        }

    
for (i=0; i<=n-1; i++)
      
for (j=0; j<=n-1; j++)
        
{ ii=i*n+j; p[ii]=q[ii];
          
for (kk=0; kk<=n-1; kk++)
            p[ii]
=p[ii]+f[i*n+kk]*a[kk*l+j];
        }

    
for (ii=2; ii<=k; ii++)
      
for (i=0; i<=n-1; i++)
        
for (j=0; j<=m-1; j++)
          
{ jj=i*l+j; a[jj]=0.0;
            
for (kk=0; kk<=n-1; kk++)
              a[jj]
=a[jj]+p[i*n+kk]*h[j*n+kk];
          }

        
for (i=0; i<=m-1; i++)
        
for (j=0; j<=m-1; j++)
          
{ jj=i*m+j; e[jj]=r[jj];
            
for (kk=0; kk<=n-1; kk++)
              e[jj]
=e[jj]+h[i*n+kk]*a[kk*l+j];
          }

        js
=rinv(e,m);
        
if (js==0
          
{ free(e); free(a); free(b); return(js);}
        
for (i=0; i<=n-1; i++)
        
for (j=0; j<=m-1; j++)
          
{ jj=i*m+j; g[jj]=0.0;
            
for (kk=0; kk<=m-1; kk++)
              g[jj]
=g[jj]+a[i*l+kk]*e[j*m+kk];
          }

        
for (i=0; i<=n-1; i++)
          
{ jj=(ii-1)*n+i; x[jj]=0.0;
            
for (j=0; j<=n-1; j++)
              x[jj]
=x[jj]+f[i*n+j]*x[(ii-2)*n+j];
          }

        
for (i=0; i<=m-1; i++)
          
{ jj=i*l; b[jj]=y[(ii-1)*m+i];
            
for (j=0; j<=n-1; j++)
              b[jj]
=b[jj]-h[i*n+j]*x[(ii-1)*n+j];
          }

        
for (i=0; i<=n-1; i++)
          
{ jj=(ii-1)*n+i;
            
for (j=0; j<=m-1; j++)
              x[jj]
=x[jj]+g[i*m+j]*b[j*l];
          }

        
if (ii<k)
          
for (i=0; i<=n-1; i++)
            
for (j=0; j<=n-1; j++)
              
{ jj=i*l+j; a[jj]=0.0;
                
for (kk=0; kk<=m-1; kk++)
                  a[jj]
=a[jj]-g[i*m+kk]*h[kk*n+j];
                
if (i==j) a[jj]=1.0+a[jj];
              }

            
for (i=0; i<=n-1; i++)
            
for (j=0; j<=n-1; j++)
              
{ jj=i*l+j; b[jj]=0.0;
                
for (kk=0; kk<=n-1; kk++)
                  b[jj]
=b[jj]+a[i*l+kk]*p[kk*n+j];
              }

            
for (i=0; i<=n-1; i++)
            
for (j=0; j<=n-1; j++)
              
{ jj=i*l+j; a[jj]=0.0;
                
for (kk=0; kk<=n-1; kk++)
                  a[jj]
=a[jj]+b[i*l+kk]*f[j*n+kk];
              }

            
for (i=0; i<=n-1; i++)
            
for (j=0; j<=n-1; j++)
              
{ jj=i*n+j; p[jj]=q[jj];
                
for (kk=0; kk<=n-1; kk++)
                  p[jj]
=p[jj]+f[i*n+kk]*a[j*l+kk];
              }

          }

      }

    free(e); free(a); free(b);
    
return(js);
  }


C++实现代码如下:
============================ kalman.h ================================

//  kalman.h: interface for the kalman class.
//
///////////////////////////////////////////////////////////////////// /

#if  !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
#define  AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_

#if  _MSC_VER > 1000
#pragma once
#endif   //  _MSC_VER > 1000

#include 
< math.h >
#include 
" cv.h "

 

class  kalman  
{
public :
 
void  init_kalman( int  x, int  xv, int  y, int  yv);
 CvKalman
*  cvkalman;
 CvMat
*  state; 
 CvMat
*  process_noise;
 CvMat
*  measurement;
 
const  CvMat *  prediction;
 CvPoint2D32f get_predict(
float  x,  float  y);
 kalman(
int  x = 0 , int  xv = 0 , int  y = 0 , int  yv = 0 );
 
// virtual ~kalman();


};

#endif   //  !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)


============================ kalman.cpp ================================

#include 
" kalman.h "
#include 
< stdio.h >


/*  tester de printer toutes les valeurs des vecteurs */
/*  tester de changer les matrices du noises  */
/*  replace state by cvkalman->state_post ???  */


CvRandState rng;
const   double  T  =   0.1 ;
kalman::kalman(
int  x, int  xv, int  y, int  yv)
{     
    cvkalman 
=  cvCreateKalman(  4 4 0  );
    state 
=  cvCreateMat(  4 1 , CV_32FC1 );
    process_noise 
=  cvCreateMat(  4 1 , CV_32FC1 );
    measurement 
=  cvCreateMat(  4 1 , CV_32FC1 );
    
int  code  =   - 1 ;
    
    
/*  create matrix data  */
     
const   float  A[]  =  { 
   
1 , T,  0 0 ,
   
0 1 0 0 ,
   
0 0 1 , T,
   
0 0 0 1
  };
     
     
const   float  H[]  =  { 
    
1 0 0 0 ,
    
0 0 0 0 ,
   
0 0 1 0 ,
   
0 0 0 0
  };
       
     
const   float  P[]  =  {
    pow(
320 , 2 ), pow( 320 , 2 ) / T,  0 0 ,
   pow(
320 , 2 ) / T, pow( 320 , 2 ) / pow(T, 2 ),  0 0 ,
   
0 0 , pow( 240 , 2 ), pow( 240 , 2 ) / T,
   
0 0 , pow( 240 , 2 ) / T, pow( 240 , 2 ) / pow(T, 2 )
    };

     
const   float  Q[]  =  {
   pow(T,
3 ) / 3 , pow(T, 2 ) / 2 0 0 ,
   pow(T,
2 ) / 2 , T,  0 0 ,
   
0 0 , pow(T, 3 ) / 3 , pow(T, 2 ) / 2 ,
   
0 0 , pow(T, 2 ) / 2 , T
   };
   
     
const   float  R[]  =  {
   
1 0 0 0 ,
   
0 0 0 0 ,
   
0 0 1 0 ,
   
0 0 0 0
   };
   
    
    cvRandInit( 
& rng,  0 1 - 1 , CV_RAND_UNI );

    cvZero( measurement );
    
    cvRandSetRange( 
& rng,  0 0.1 0  );
    rng.disttype 
=  CV_RAND_NORMAL;

    cvRand( 
& rng, state );

    memcpy( cvkalman
-> transition_matrix -> data.fl, A,  sizeof (A));
    memcpy( cvkalman
-> measurement_matrix -> data.fl, H,  sizeof (H));
    memcpy( cvkalman
-> process_noise_cov -> data.fl, Q,  sizeof (Q));
    memcpy( cvkalman
-> error_cov_post -> data.fl, P,  sizeof (P));
    memcpy( cvkalman
-> measurement_noise_cov -> data.fl, R,  sizeof (R));
    
// cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );    
    
// cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));
 
// cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );

    
/*  choose initial state  */

    state
-> data.fl[ 0 ] = x;
    state
-> data.fl[ 1 ] = xv;
    state
-> data.fl[ 2 ] = y;
    state
-> data.fl[ 3 ] = yv;
    cvkalman
-> state_post -> data.fl[ 0 ] = x;
    cvkalman
-> state_post -> data.fl[ 1 ] = xv;
    cvkalman
-> state_post -> data.fl[ 2 ] = y;
    cvkalman
-> state_post -> data.fl[ 3 ] = yv;

 cvRandSetRange( 
& rng,  0 , sqrt(cvkalman -> process_noise_cov -> data.fl[ 0 ]),  0  );
    cvRand( 
& rng, process_noise );


    }

     
CvPoint2D32f kalman::get_predict(
float  x,  float  y){
    

    
/*  update state with current position  */
    state
-> data.fl[ 0 ] = x;
    state
-> data.fl[ 2 ] = y;

    
    
/*  predict point position  */
    
/*  x'k=A鈥k+B鈥k
       P'k=A鈥k-1*AT + Q 
*/
    cvRandSetRange( 
& rng,  0 , sqrt(cvkalman -> measurement_noise_cov -> data.fl[ 0 ]),  0  );
    cvRand( 
& rng, measurement );
    
     
/*  xk=A?xk-1+B?uk+wk  */
    cvMatMulAdd( cvkalman
-> transition_matrix, state, process_noise, cvkalman -> state_post );
    
    
/*  zk=H?xk+vk  */
    cvMatMulAdd( cvkalman
-> measurement_matrix, cvkalman -> state_post, measurement, measurement );
    
    
/*  adjust Kalman filter state  */
    
/*  Kk=P'k鈥T鈥?H鈥'k鈥T+R)-1
       xk=x'k+Kk鈥?zk-H鈥'k)
       Pk=(I-Kk鈥)鈥'k 
*/
    cvKalmanCorrect( cvkalman, measurement );
    
float  measured_value_x  =  measurement -> data.fl[ 0 ];
    
float  measured_value_y  =  measurement -> data.fl[ 2 ];

    
 
const  CvMat *  prediction  =  cvKalmanPredict( cvkalman,  0  );
    
float  predict_value_x  =  prediction -> data.fl[ 0 ];
    
float  predict_value_y  =  prediction -> data.fl[ 2 ];

    
return (cvPoint2D32f(predict_value_x,predict_value_y));
}

void  kalman::init_kalman( int  x, int  xv, int  y, int  yv)
{
 state
-> data.fl[ 0 ] = x;
    state
-> data.fl[ 1 ] = xv;
    state
-> data.fl[ 2 ] = y;
    state
-> data.fl[ 3 ] = yv;
    cvkalman
-> state_post -> data.fl[ 0 ] = x;
    cvkalman
-> state_post -> data.fl[ 1 ] = xv;
    cvkalman
-> state_post -> data.fl[ 2 ] = y;
    cvkalman
-> state_post -> data.fl[ 3 ] = yv;
}


你可能感兴趣的:(算法)