LeetCode解题报告:LRU Cache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

思路:Java的LinkedHashMap可以实现最近最少使用(LRU)的次序。类似于HashMap。详见《JAVA编程思想(第4版)》P487.

         题目要求是一个固定大小的cache,因此需要一个变量maxCapacity来记录容量大小,用LinkedHashMap存储数据。在添加数据set()方法时,判断一下是否达到maxCapacity,如果cache已经满了,remove掉最长时间不使用的数据,然后put进新的数据。

注意:HashMap,LinkedHashMap,TreeMap的区别,详细看看StackOverFlow

LinkedHashMap最常用的是LRU cache的实现。
如果用C++实现的话, hashmap + 双向链表:用 双向链表记录value 用hashmap记录 key值在链表中的位置(指针)。

unordered_map<int, list<CacheNode>:: iterator> cacheMap;

题解:

import java.util.LinkedHashMap;



public class LRUCache {



	LinkedHashMap<Integer, Integer> linkedmap;

	int maxCapacity;



	public LRUCache(int capacity) {

		this.maxCapacity = capacity;

		this.linkedmap = new LinkedHashMap<Integer, Integer>(capacity, 1f, true);

	}



	public int get(int key) {

		if (linkedmap.containsKey(key))

			return linkedmap.get(key);

		else

			return -1;

	}



	public void set(int key, int value) {

		int size = linkedmap.size();

		if ((size < maxCapacity) || (linkedmap.containsKey(key))) {

			linkedmap.put(key, value);

		} else if (size >= maxCapacity) {

			Iterator<Integer> it = linkedmap.keySet().iterator();//iterator method is superior the toArray(T[] a) method.

			linkedmap.remove(it.next());

			linkedmap.put(key, value);

		}

	}

}

结题遇到的问题:

1.下面这段代码提交的时候超时了。

import java.util.LinkedHashMap;



public class LRUCache {

	LinkedHashMap<Integer, Integer> linkedmap;

	int maxCapacity;



	public LRUCache(int capacity) {

		this.maxCapacity = capacity;

		this.linkedmap = new LinkedHashMap<Integer, Integer>(capacity, 1f, true);

	}



	public int get(int key) {

		if (linkedmap.containsKey(key))

			return linkedmap.get(key);

		else

			return -1;

	}



	public void set(int key, int value) {

		int size = linkedmap.size();

		if ((size < maxCapacity) || (linkedmap.containsKey(key))) {

			linkedmap.put(key, value);

		} else if (size >= maxCapacity) {

			Integer[] keyArray = linkedmap.keySet().toArray(new Integer[0]);//这是超时的代码,采用Iterator不会超时。

			linkedmap.remove(keyArray[0]);

			linkedmap.put(key, value);

		}

	}



}

2.Roger自己实现LinkedHashMap的功能,采用双向链表和哈希表。效率略低于LinkedHashMap.(644ms>548ms)  

import java.util.HashMap;



public class LRUCache {



	private HashMap<Integer, Entry<Integer>> index;

	private UDFList<Integer> data;



	public LRUCache(int capacity) {

		index = new HashMap<Integer, Entry<Integer>>(capacity);

		data = new UDFList<Integer>(capacity);

	}



	public int get(int key) {

		if (!isExist(key)) {

			index.remove(key);

			return -1;

		}

		if (!index.get(key).equals(data.head)) {

			Entry<Integer> nodePtr = data.adjust(index.get(key));

			index.put(key, nodePtr);

		}

		return index.get(key).element;

	}



	public void set(int key, int value) {

		if (isExist(key)) {

			data.remove(index.get(key));

		}

		index.put(key, data.push(value));

	}



	private boolean isExist(int key) {

		if (index.get(key) == null) {

			return false;

		}

		if (index.get(key).element == null) {

			return false;

		}

		return true;

	}



	public class UDFList<E> {

		public Entry<E> head;

		public Entry<E> tail;

		public final int size;

		public int length = 0;



		public UDFList(int size) {

			head = new Entry<E>(null, null, null);

			tail = head;

			this.size = size;

		}



		public Entry<E> adjust(Entry<E> node) {

			if (node.equals(tail)) {

				tail = tail.previous;

				tail.next = null;

				node.previous = null;

			} else if (node.equals(head)) {

				node = null;

				return head;

			} else {

				node.previous.next = node.next;

				node.next.previous = node.previous;

			}

			head.previous = node;

			node.next = head;

			head = node;

			node = null;

			return head;

		}



		public Entry<E> push(E e) {

			Entry<E> newNode = new Entry<E>(e, null, null);

			if (length == 0) {

				head = newNode;

				tail = head;

			} else {

				head.previous = newNode;

				newNode.next = head;

				head = newNode;

			}

			if (length == size) {

				remove(tail);

			}

			length++;

			return head;

		}



		public void remove(Entry<E> node) {

			if (node == null)

				return;

			node.element = null;

			if (node.equals(head)) {

				head = head.next;

			} else if (node.equals(tail)) {

				tail = tail.previous;

				tail.next = null;

			} else {

				node.previous.next = node.next;

				node.next.previous = node.previous;

			}

			node = null;

			length--;

		}

	}



	public class Entry<E> {

		public E element;

		public Entry<E> previous;

		public Entry<E> next;



		public Entry(E element, Entry<E> next, Entry<E> previous) {

			this.element = element;

			this.next = next;

			this.previous = previous;

		}

	}

}

  

  

你可能感兴趣的:(LeetCode)