Lintcode: Majority Number 解题报告

Majority Number

原题链接:http://lintcode.com/en/problem/majority-number/#

Given an array of integers, the majority number is the number that occurs more than half of the size of the array. Find it.

Example

For [1, 1, 1, 1, 2, 2, 2], return 1

Challenge

O(n) time and O(1) space

SOLUTION 1:

http://www.geeksforgeeks.org/majority-element/

这里是一篇论文: http://www.cs.utexas.edu/~moore/best-ideas/mjrty/

这里用的算法是:MJRTY - A Fast Majority Vote Algorithm

1. 简单来讲,就是不断对某个议案投票,如果有人有别的议案,则将前面认为的议案的cnt减1,减到0换一个议案。

如果存在majority number,那么这个议案一定不会被减到0,最后会胜出。

2. 投票完成后,要对majority number进行检查,以排除不存在majority number的情况。如 1,2,3,4这样的数列,是没有majory number的。

很简单,统计一下结果议案的票数,没有过半就是没有majority number.

摘录一段解释:

METHOD 3 (Using Moore’s Voting Algorithm)

This is a two step process.
1. Get an element occurring most of the time in the array. This phase will make sure that if there is a majority element then it will return that only.
2. Check if the element obtained from above step is majority element.

1. Finding a Candidate:
The algorithm for first phase that works in O(n) is known as Moore’s Voting Algorithm. Basic idea of the algorithm is if we cancel out each occurrence of an element e with all the other elements that are different from e then e will exist till end if it is a majority element.

findCandidate(a[], size)

1.  Initialize index and count of majority element

     maj_index = 0, count = 1

2.  Loop for i = 1 to size – 1

    (a)If a[maj_index] == a[i]

        count++

    (b)Else

        count--;

    (c)If count == 0

        maj_index = i;

        count = 1

3.  Return a[maj_index]

Above algorithm loops through each element and maintains a count of a[maj_index], If next element is same then increments the count, if next element is not same then decrements the count, and if the count reaches 0 then changes the maj_index to the current element and sets count to 1.
First Phase algorithm gives us a candidate element. In second phase we need to check if the candidate is really a majority element. Second phase is simple and can be easily done in O(n). We just need to check if count of the candidate element is greater than n/2.

Example:
A[] = 2, 2, 3, 5, 2, 2, 6
Initialize:
maj_index = 0, count = 1 –> candidate ‘2?
2, 2, 3, 5, 2, 2, 6

Same as a[maj_index] => count = 2
2, 2, 3, 5, 2, 2, 6

Different from a[maj_index] => count = 1
2, 2, 3, 5, 2, 2, 6

Different from a[maj_index] => count = 0
Since count = 0, change candidate for majority element to 5 => maj_index = 3, count = 1
2, 2, 3, 5, 2, 2, 6

Different from a[maj_index] => count = 0
Since count = 0, change candidate for majority element to 2 => maj_index = 4
2, 2, 3, 5, 2, 2, 6

Same as a[maj_index] => count = 2
2, 2, 3, 5, 2, 2, 6

Different from a[maj_index] => count = 1

Finally candidate for majority element is 2.

First step uses Moore’s Voting Algorithm to get a candidate for majority element.

2. Check if the element obtained in step 1 is majority

printMajority (a[], size)

1.  Find the candidate for majority

2.  If candidate is majority. i.e., appears more than n/2 times.

       Print the candidate

3.  Else

       Print "NONE"

 1 package Algorithms.lintcode.math;

 2 

 3 import java.util.ArrayList;

 4 

 5 public class MajorityNumber {

 6     /**

 7      * @param nums: a list of integers

 8      * @return: find a  majority number

 9      */

10     public int majorityNumber(ArrayList<Integer> nums) {

11         // write your code

12         if (nums == null || nums.size() == 0) {

13             // No majority number.

14             return -1;

15         }

16         

17         int candidate = nums.get(0);

18         

19         // The phase 1: Voting.

20         int cnt = 1;

21         for (int i = 1; i < nums.size(); i++) {

22             if (nums.get(i) == candidate) {

23                 cnt++;

24             } else {

25                 cnt--;

26                 if (cnt == 0) {

27                     candidate = nums.get(i);

28                     cnt = 1;

29                 }

30             }

31         }

32         

33         // The phase 2: Examing.

34         cnt = 0;

35         for (int i = 0; i < nums.size(); i++) {

36             if (nums.get(i) == candidate) {

37                 cnt++;

38             }

39         }

40         

41         // No majory number.

42         if (cnt <= nums.size() / 2) {

43             return -1;

44         }

45         

46         return candidate;

47     }

48 }
View Code

2014.12.27 REDO:

 1 public int majorityElement(int[] num) {

 2         if (num == null || num.length == 0) {

 3             return -1;

 4         }

 5         

 6         int maj = num[0];

 7         

 8         int len = num.length;

 9         int cnt = 1;

10         for (int i = 1; i < len; i++) {

11             if (cnt == 0) {

12                 maj = num[i];

13                 cnt = 1;

14             } else if (num[i] != maj) {

15                 cnt--;

16             } else {

17                 cnt++;

18             }

19         }

20         

21         return maj;

22     }
View Code

 

GITHUB:

https://github.com/yuzhangcmu/LeetCode_algorithm/blob/master/lintcode/math/MajorityNumber.java

你可能感兴趣的:(number)