使用Hive UDF和GeoIP库为Hive加入IP识别功能

Hive是基于Hadoop的数据管理系统,作为分析人员的即时分析工具和ETL等工作的执行引擎,对于如今的大数据管理与分析、处理有着非常大的 意义。GeoIP是一套IP映射数据库,它定时更新,并且提供了各种语言的API,非常适合在做地域相关数据分析时的一个数据源。

Precondition:通过 IP 地址获得用户的地理位置信息
也就是根据用户的IP,通过IP数据库查询获得信息。 一般IP数据库中,

每条记录的基本结构

IP地址段(起始、结束),以及对应的信息数据
一般包含的信息:国家、区域(省/州)、城市、街道、经纬度、ISP提供商等信息

因为IP数据库随着时间经常变化(不过一段时间内变化很小),所以需要有人经常维护和更新。这个数据也不可能完全准确、也不可能覆盖全。这是maxmind的城市准确度 http://www.maxmind.com/app/city_accuracy
因为没有权威的数据组织机构,且经常有变化。各家数据供应商,基本上做着做着就形成自己的一套数据了。

目前,国内用的比较有名的是“纯真IP数据库”,国外常用的是 maxmind、ip2location。

IP数据库是否收费:收费、免费都有。一般有人维护的数据往往都是收费的,准确率和覆盖率会稍微高一些。

质量方面:
  1. 主要概念是准确率和覆盖率。
  2. 记录数据总条数。纯真现在是38万条(2010年07月30日更新)
  3. 是否有人维护。
  4. 数据库更新频率:每月、每周。数据库会定期更新的,maxmind开源版是每月更新一次。

查询形式:
  • 本地,将IP数据库下载到本地使用,查询效率高、性能好。常用在统计分析方面。具体形式又分为:
    • 内存查询:将全部数据直接加载到内存中,便于高性能查询。或者二进制的数据文件本身就是经过优化的索引文件,可以直接对文件做查询。
    • 数据库查询:将数据导入到数据库,再用数据库查询。效率没有内存查询快。
  • 远程(web service或ajax),调用远程第三方服务。查询效率自然比较低,一般用在网页应用中。
查询的本质:输入一个IP,找到其所在的IP段,一般都是采用二分搜索实现的。


是否提供API:有的IP数据库提供API,支持多语言(java、javascript、C#等),这样你就不用自己直接分析数据格式、整理、写查询代码了。

是否提供经纬度:纯真IP数据库不提供经纬度,Maxmind提供,如果做地图应用,一般是需要经纬度的


而UDF是Hive提供的用户自定义函数的接口,通过实现它可以扩展Hive目前已有的内置函数。而为Hive加入一个IP映射函数,我们只需要简单地在UDF中调用GeoIP的Java API即可。

GeoIP的数据文件可以从这里下载:http://www.maxmind.com/download/geoip/database/,由于需 要国家和城市的信息,我这里下载的是http://www.maxmind.com/download/geoip/database /GeoLiteCity.dat.gz

 

GeoIP的各种语言的API可以从这里下载:http://www.maxmind.com/download/geoip/api/

 

操作Steps如下:

Step 1:Hive所需添加的IP地址信息识别UDF函数如下:

package org.hadoop.hive.additionalUDF;



import java.io.File;

import java.io.IOException;

import org.apache.hadoop.hive.ql.exec.UDF;



import com.maxmind.geoip.Location;

import com.maxmind.geoip.LookupService;

import com.maxmind.geoip.regionName;

import com.maxmind.geoip.timeZone;



import java.util.regex.*;



public class IPToCC  extends UDF {

    private static LookupService cl = null;

    private static String ipPattern = "\\d+\\.\\d+\\.\\d+\\.\\d+";

    private static String ipNumPattern = "\\d+";

    

    static LookupService getLS(String dbfile) throws IOException{

        

        //String sep = System.getProperty("file.separator");

        //String dir = "/home/landen/UntarFile/GeoIP";



        //String dbfile = dir + sep + "GeoLiteCity.dat";

        //String dbfile = "GeoLiteCity.dat";

        if(new File(dbfile).exists())

        {

            if(cl == null)

            {

                cl = new LookupService(dbfile,LookupService.GEOIP_MEMORY_CACHE);

            }    

        }

        

        return cl;



    }

    

    /**

     * @param str like "114.43.181.143"

     * */

    

    public String evaluate(String str,String ipDBInfo) {

        try

        {

            Location l1 = null;

            Matcher mIP = Pattern.compile(ipPattern).matcher(str);

            Matcher mIPNum = Pattern.compile(ipNumPattern).matcher(str);

            if(mIP.matches())

                l1 = getLS(ipDBInfo).getLocation(str);

            else if(mIPNum.matches())

                l1 = getLS(ipDBInfo).getLocation(Long.parseLong(str));    

            

            /*System.out.println("countryCode: " + l1.countryCode +

                    "\n countryName: " + l1.countryName +

                    "\n region: " + l1.region +

                    "\n regionName: " + regionName.regionNameByCode(l1.countryCode, l1.region) +

                    "\n city: " + l1.city +

                    "\n latitude: " + l1.latitude +

                    "\n longitude: " + l1.longitude +

                    "\n timezone: " + timeZone.timeZoneByCountryAndRegion(l1.countryCode, l1.region));*/

            

            return String.format("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s",l1.countryCode,l1.countryName,l1.region,regionName.regionNameByCode(l1.countryCode, l1.region),l1.city,l1.latitude,l1.longitude,timeZone.timeZoneByCountryAndRegion(l1.countryCode, l1.region));

        }

        catch(Exception e)

        {

            e.printStackTrace();

            if(cl != null)

                cl.close();

            return null;

        }

    }

    

    public static void main(String[] args)

    {

        String dbfile = "GeoLiteCity.dat";

        IPToCC ipTocc = new IPToCC();

        String ipAdress = "221.12.10.218";

        

        System.out.println(ipTocc.evaluate(ipAdress,dbfile));

    }



}
Step 2.将以上程序和GeoIP的API程序,一起打成JAR包IPToCC.jar,和数据文件(GeoLiteCity.dat)一起放到Hive所在的服务器的一个位置。然后可以按照以下两种方式将以上资源添加到Hive中:
1> 打开Hive执行以下语句:
landen@Master:~/UntarFile/hive-0.10.0$ bin/hive
WARNING: org.apache.hadoop.metrics.jvm.EventCounter is deprecated. Please use org.apache.hadoop.log.metrics.EventCounter in all the log4j.properties files.
Logging initialized using configuration in jar:file:/home/landen/UntarFile/hive-0.10.0/lib/hive-common-0.10.0.jar!/hive-log4j.properties
Hive history file=/home/landen/UntarFile/hive-0.10.0/logs/hive_job_log_landen_201312081638_1930432077.txt
hive (default)> use stuchoosecourse;
OK
Time taken: 5.251 seconds
hive (stuchoosecourse)> add file /home/landen/UntarFile/GeoIP/GeoLiteCity.dat;
Added resource: /home/landen/UntarFile/GeoIP/GeoLiteCity.dat
hive (stuchoosecourse)> add jar /home/landen/UntarFile/hive-0.10.0/lib/IPTocc.jar;
Added /home/landen/UntarFile/hive-0.10.0/lib/IPTocc.jar to class path
Added resource: /home/landen/UntarFile/hive-0.10.0/lib/IPTocc.jar
hive (stuchoosecourse)> create temporary function IP4Tocc as 'org.hadoop.hive.additionalUDF.IPToCC';
OK
Time taken: 0.107 seconds
2> 在启动hive shell命令前,在$HIVE_HOME/conf目录下添加.hiverc文件,然后添加如下内容:
add file /home/landen/UntarFile/GeoIP/GeoLiteCity.dat;
add jar /home/landen/UntarFile/hive-0.10.0/lib/IPTocc.jar;
create temporary function IP4Tocc as 'org.hadoop.hive.additionalUDF.IPToCC';
当启动hive shell命令后,hive会将加载.hiverc文件内容并添加到全局内容中,便于client使用

Step 3:Hive测试内容如下:
hive (stuchoosecourse)> select * from ipidentifier;
OK
ipadress
221.12.10.218
60.180.248.201
125.111.251.118
Time taken: 0.099 seconds
hive (stuchoosecourse)> select IP4Tocc(ipadress,'./GeoLiteCity.dat') from ipidentifier;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201312042044_0020, Tracking URL = http://Master:50030/jobdetails.jsp?jobid=job_201312042044_0020
Kill Command = /home/landen/UntarFile/hadoop-1.0.4/libexec/../bin/hadoop job  -kill job_201312042044_0020
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2013-12-08 20:54:10,276 Stage-1 map = 0%,  reduce = 0%
2013-12-08 20:54:18,308 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:19,313 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:20,317 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:21,322 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:22,326 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:23,331 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.55 sec
2013-12-08 20:54:24,402 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 2.55 sec
MapReduce Total cumulative CPU time: 2 seconds 550 msec
Ended Job = job_201312042044_0020
MapReduce Jobs Launched:
Job 0: Map: 1   Cumulative CPU: 2.55 sec   HDFS Read: 306 HDFS Write: 188 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 550 msec
OK
_c0
CN    China    02    Zhejiang    Hangzhou    30.293594    120.16141    Asia/Shanghai
CN    China    02    Zhejiang    Wenzhou    27.999405    120.66681    Asia/Shanghai
CN    China    02    Zhejiang    Ningbo    29.878204    121.5495    Asia/Shanghai
hive (stuchoosecourse)> select split(IP4Tocc(ipadress,'./GeoLiteCity.dat'),'\t') from ipidentifier;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201312042044_0021, Tracking URL = http://Master:50030/jobdetails.jsp?jobid=job_201312042044_0021
Kill Command = /home/landen/UntarFile/hadoop-1.0.4/libexec/../bin/hadoop job  -kill job_201312042044_0021
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2013-12-08 21:12:46,717 Stage-1 map = 0%,  reduce = 0%
2013-12-08 21:12:56,764 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:12:57,768 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:12:58,772 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:12:59,775 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:13:00,778 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:13:01,782 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.28 sec
2013-12-08 21:13:02,786 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.28 sec
MapReduce Total cumulative CPU time: 4 seconds 280 msec
Ended Job = job_201312042044_0021
MapReduce Jobs Launched:
Job 0: Map: 1   Cumulative CPU: 4.28 sec   HDFS Read: 306 HDFS Write: 188 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 280 msec
OK
_c0
["CN","China","02","Zhejiang","Hangzhou","30.293594","120.16141","Asia/Shanghai"]
["CN","China","02","Zhejiang","Wenzhou","27.999405","120.66681","Asia/Shanghai"]
["CN","China","02","Zhejiang","Ningbo","29.878204","121.5495","Asia/Shanghai"]
Time taken: 45.037 seconds
hive (stuchoosecourse)> create table HiddenIPInfo(
                      > IP string,countrycode string,countryname string,region string,regionname string,city string,      
                      > latitude string,longitude string,timezone string);
OK
Time taken: 1.828 seconds
hive (stuchoosecourse)> show tables;
OK
tab_name
hbase_stu_course
hiddenipinfo
ipidentifier
Time taken: 0.486 seconds
hive (stuchoosecourse)> describe hiddenipinfo;
OK
col_name    data_type    comment
ip    string    
countrycode    string    
countryname    string    
region    string    
regionname    string    
city    string    
latitude    string    
longitude    string    
timezone    string    
Time taken: 0.33 seconds
hive (stuchoosecourse)> from(select ipadress,split(IP4Tocc(ipadress,'./GeoLiteCity.dat'),'\t') as IPInfo from ipidentifier)e
                      > insert overwrite table hiddenipinfo
                      > select e.ipadress,e.IPInfo[0] as countrycode,e.IPInfo[1] as countryname,e.IPInfo[2] as region,
                      > e.IPInfo[3] as regionname,e.IPInfo[4] as city,e.IPInfo[5] as latitude,e.IPInfo[6] as longitude,
                      > e.IPInfo[7] as timezone;
Total MapReduce jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201312042044_0023, Tracking URL = http://Master:50030/jobdetails.jsp?jobid=job_201312042044_0023
Kill Command = /home/landen/UntarFile/hadoop-1.0.4/libexec/../bin/hadoop job  -kill job_201312042044_0023
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2013-12-08 21:58:12,406 Stage-1 map = 0%,  reduce = 0%
2013-12-08 21:58:18,449 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:19,454 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:20,458 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:21,462 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:22,466 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:23,470 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.48 sec
2013-12-08 21:58:24,474 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 1.48 sec
MapReduce Total cumulative CPU time: 1 seconds 480 msec
Ended Job = job_201312042044_0023
Ended Job = 39195028, job is filtered out (removed at runtime).
Ended Job = 1695434910, job is filtered out (removed at runtime).
Moving data to: hdfs://Master:9000/home/landen/UntarFile/hive-0.10.0/warehouse/hive_2013-12-08_21-57-40_106_7083774091282915969/-ext-10000
Loading data to table stuchoosecourse.hiddenipinfo
Deleted hdfs://Master:9000/home/landen/UntarFile/hive-0.10.0/warehouse/stuchoosecourse.db/hiddenipinfo
Table stuchoosecourse.hiddenipinfo stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 233, raw_data_size: 0]
3 Rows loaded to hiddenipinfo
MapReduce Jobs Launched:
Job 0: Map: 1   Cumulative CPU: 1.48 sec   HDFS Read: 306 HDFS Write: 233 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 480 msec
OK
ipadress    countrycode    countryname    region    regionname    city    latitude    longitude    timezone
Time taken: 45.692 seconds
hive (stuchoosecourse)> show tables;
OK
tab_name
hbase_stu_course
hiddenipinfo
ipidentifier
Time taken: 0.053 seconds
hive (stuchoosecourse)> select * from hiddenipinfo;
OK
ip               countrycode    countryname    region    regionname    city       latitude    longitude    timezone
221.12.10.218    CN             China          02        Zhejiang     Hangzhou   30.293594   120.16141    Asia/Shanghai
60.180.248.201   CN             China          02        Zhejiang      Wenzhou    27.999405   120.66681    Asia/Shanghai
125.111.251.118  CN             China          02        Zhejiang      Ningbo     29.878204   121.5495     Asia/Shanghai
Time taken: 0.083 seconds






 

 

你可能感兴趣的:(hive)