接上文重点分析map操作:
Vector probabilities = classifier.classify(value.get());// 第一行 Vector selections = policy.select(probabilities); // 第二行 for (Iterator<Element> it = selections.iterateNonZero(); it.hasNext();) { Element el = it.next(); classifier.train(el.index(), value.get(), el.get()); // 第三行 }
这几句要如何理解?
比如我随机的中心点向量是:
2.9,2.9 3.0,3.0
然后我的所有的输入向量为:
[{1:8.1,0:8.1}, {1:8.0,0:8.0}, {1:7.0,0:7.0}, {1:7.1,0:7.1}, {1:6.1,0:6.1}, {1:6.2,0:6.2}, {1:9.0,0:9.0}, {1:2.0,0:2.0}, {1:7.1,0:7.1}, {1:1.0,0:1.0}, {}, {1:2.1,0:2.1}, {1:2.9,0:2.9}, {1:1.1,0:1.1}, {1:0.1,0:0.1}, {1:3.0,0:3.0}]
那么第一行就是针对一个输入向量,求其到中心点向量的距离,如果我有三个中心点,那么probabilities的size就是3,第二行的作用就是找到probabilities值较大(这里为什么是较大?而不是较小?因为在求距离的时候用到了倒数,这样原来小的就变大了,具体计算过程有时间再分析)的下标值,然后用第三行的方法把这个输入向量分入到其对应的中心点向量。如何分?比如第一个输入向量[8.1,8.1]那么应该把其分入[3.0,3.0],那么第1个中心点向量在第一条记录后,其s0=2,s1=8.1+3.0,s2=8.1*8.1+3.0*3.0 ,一次类推,等全部输入结束后,两个中心点的属性如下:
[2.9,2.9]: s0=8, s1={1:12.1,0:12.1} ,s2={1:27.450000000000003,0:27.450000000000003}
[3.0,3.0]: s0=10, s1={1:64.60000000000001,0:64.60000000000001} , s2={1:454.08000000000004,0:454.08000000000004}
然后这两个中心点 输出到reduce;
然后我整体跑了一遍,得到第一个输出结果即cluster-1的结果是两个中心点,为 CL-12{n=8 c=[1.513, 1.513] r=[1.069, 1.069]},
CL-15{n=10 c=[6.460, 6.460] r=[1.917, 1.917]}。
然后我又仿造了Reducer:
package mahout.fansy.kmeans; import java.io.IOException; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.mahout.clustering.Cluster; import org.apache.mahout.clustering.classify.ClusterClassifier; import org.apache.mahout.clustering.iterator.ClusterWritable; import org.apache.mahout.clustering.iterator.ClusteringPolicy; import org.apache.mahout.common.iterator.sequencefile.PathFilters; import org.apache.mahout.common.iterator.sequencefile.PathType; import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirValueIterable; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; import org.apache.mahout.math.Vector.Element; import com.google.common.collect.Lists; public class TestCIReducer { /** * @param args */ private static ClusterClassifier classifier; private static ClusteringPolicy policy; public static void main(String[] args) throws IOException { setup(); reduce(); } /** * 仿造setup函数 * @throws IOException */ public static void setup() throws IOException{ Configuration conf=new Configuration(); conf.set("mapred.job.tracker", "hadoop:9001"); // 这句是否可以去掉? String priorClustersPath ="hdfs://hadoop:9000/user/hadoop/out/kmeans-output/clusters-0"; classifier = new ClusterClassifier(); classifier.readFromSeqFiles(conf, new Path(priorClustersPath)); policy = classifier.getPolicy(); policy.update(classifier); } /** * 仿造map函数 */ public static void map(){ List<VectorWritable> vList=getInputData(); for(VectorWritable value: vList){ Vector probabilities = classifier.classify(value.get()); Vector selections = policy.select(probabilities); for (Iterator<Element> it = selections.iterateNonZero(); it.hasNext();) { Element el = it.next(); classifier.train(el.index(), value.get(), el.get()); } } } /** * 仿造cleanup函数 */ public static List<ClusterWritable> cleanup(){ List<Cluster> clusters = classifier.getModels(); List<ClusterWritable> cList=Lists.newArrayList(); ClusterWritable cw = null; for (int index = 0; index < clusters.size(); index++) { cw=new ClusterWritable(); cw.setValue(clusters.get(index)); cList.add(cw); //System.out.println("index:"+index+",cw :"+ cw.getValue().getCenter() ); } return cList; } public static void reduce(){ map(); // 给classifier赋值 List<ClusterWritable>cList = cleanup(); ClusterWritable first = null; for (ClusterWritable cw :cList) { if (first == null) { first = cw; } else { first.getValue().observe(cw.getValue()); } } List<Cluster> models = new ArrayList<Cluster>(); models.add(first.getValue()); classifier = new ClusterClassifier(models, policy); classifier.close(); System.out.println("value:"+first); } /** * 获得输入数据 * @return */ public static List<VectorWritable> getInputData(){ String input="hdfs://hadoop:9000/user/hadoop/out/kmeans-in-transform/part-r-00000"; Path path=new Path(input); Configuration conf=new Configuration(); List<VectorWritable> vList=Lists.newArrayList(); for (VectorWritable cw : new SequenceFileDirValueIterable<VectorWritable>(path, PathType.LIST, PathFilters.logsCRCFilter(), conf)) { vList.add(cw); } return vList; } }
但是最终只是输出了一个中心点,结果有误?应该是我仿造的代码有问题,明天继续。。。
分享,快乐,成长
转载请注明出处:http://blog.csdn.net/fansy1990