poj-3661-另一种做法(滚动数组)

题意:上一篇博客~~

做法:

根据上一篇博客我们知道,dp[i][0]的值与dp[i-k][k]的最大值有关系。

dp[i][j]只与dp[i-1][j-1]有关系。

那么我们就建立一个数组fan[x],fan[x]代表到现在的i为止,dp[i-k][k]的最大值(i-k+k=x)。

每执行一分钟,就更新一次数组fan[x]。

两个做法的结果比较:

第一种做法,二维数组:

 

19828K 172MS

 

 

第二种做法,滚动数组:

 

248K 188MS

 

 

我们可以发现用时差不多,但是数组小了很多,所以说当n比较大的时候,可以选择用第二种做法。

 

#include<stdio.h>

#include<iostream>

#include<string.h>

#include<algorithm>

#include<queue>

#include<stack>

#include<map>

#include<string>

#include<stdlib.h>

#define INF_MAX 0x7fffffff

#define INF 999999

#define max3(a,b,c) (max(a,b)>c?max(a,b):c)

#define min3(a,b,c) (min(a,b)<c?min(a,b):c)

#define mem(a,b) memset(a,b,sizeof(a))

using namespace std;

struct node

{

    int u;

    int v;

    int w;

    bool friend operator < (node a, node b){

        return a.w < b.w;

    }

}edge[1001];

int gcd(int n,int m){if(n<m) swap(n,m);return n%m==0?m:gcd(m,n%m);}

int lcm(int n,int m){if(n<m) swap(n,m);return n/gcd(n,m)*m;}

int main()

{

    int n,m,i,j;

    int d[10001];

    scanf("%d%d",&n,&m);

    for(i=1;i<=n;i++)

    {

        scanf("%d",&d[i]);

    }

    int dp[2][501];

    int fan[10001];

    memset(fan,0,sizeof(fan));

    for(j=0;j<=m;j++)dp[0][j]=0;

    for(i=1;i<=n;i++)

    {

        dp[i%2][0]=max(fan[i],dp[(i-1)%2][0]);

        dp[i%2][1]=dp[(i-1)%2][0]+d[i];

        for(j=2;j<=m;j++)

        {

            if(dp[(i-1)%2][j-1]!=0)dp[i%2][j]=dp[(i-1)%2][j-1]+d[i];

            else dp[i%2][j]=0;

        }

        for(j=1;j<=m;j++)

        {

            if(i+j<=n&&dp[i%2][j])

                fan[i+j]=max(fan[i+j],dp[i%2][j]);

        }

    }

    printf("%d\n",dp[n%2][0]);

    return 0;

}
























 

 

你可能感兴趣的:(poj)