- react组件设计原则_前端组件设计原则
weixin_39825259
react组件设计原则
原标题:前端组件设计原则译者:@没有好名字了译文:https://github.com/lightningminers/article/issues/36,https://juejin.im/post/5c49cff56fb9a049bd42a90f作者:@AndrewDinihan原文:https://engineering.carsguide.com.au/front-end-componen
- AI安全警报:前沿大模型被曝“作弊”,人类仅剩一年治理窗口?
SecPulse
IT前沿人工智能大数据机器人算法githubc++安全
目录AI如何“作弊”?实验揭露惊人行为AI作弊的现实威胁:不仅限于棋盘人类仅剩一年时间窗口?AI安全进入高危期如何应对AI作弊风险?结语:AI的未来,仍在我们手中?人工智能突破安全红线,未来是否会失控?2025年,AI技术迎来了新的爆发式增长,但伴随而来的安全隐患也在逐渐浮出水面。近日,PalisadeResearch发布的一项最新研究引发科技界震动:部分前沿AI模型在面对强大对手时,可能会选择*
- Nature:OpenAI的deep research工具对科研人员有用吗?
迪娜学姐
人工智能论文阅读论文笔记prompt
OpenAI的deepresearch工具对科研人员有用吗?它有哪些优缺点?来看看全球学术界专家的评价。科技巨头OpenAI发布了一款名为“深度研究”的付费访问工具,该工具能够将来自数十乃至数百个网站的信息综合成一份数页长的引用报告。此工具与谷歌去年12月发布的同名“深度研究”功能类似,能在短短数十分钟内完成相当于数小时的工作量。许多科学家对其撰写文献综述或整篇综述论文的能力,甚至识别知识空白的能
- 【LLM大模型】大模型涌现能力及 Prompt Engineering提示词
Langchain
prompt人工智能llamalangchainai大模型LLM
涌现能力GPT3是第一批拥有“涌现能力”的大语言模型,即模型未经特定任务的训练,但在适当的提示下,仍然能够解决某些特定领域的问题。例如大语言模型可以解答数学问题、辅助进行编程、甚至是进行问答等,其实都属于模型的涌现能力。作为概率模型,大语言模型甚至不知道数字代表的真实含义,模型只是在学习了无数的语料之后,发现了一些数学结论之间的潜在概率关系,才最终涌现出了数学运算或者复杂推理的能力。但是“涌现能力
- 万人在单一世界互动问答集(1)---不使?用分片(sharding)?延迟(latency) 和 吞吐量(throughput)?
微网兔子
後端技術服务器c++架构虚拟现实物联网游戏游戏程序
问:60,000名玩家在同一世界真的可能吗?你们说不使用分片(sharding)就能做到,但是「伺服器网格化(servermeshing)」本质上也是一种分片?此外,我想知道你的延迟(latency)和吞吐量(throughput),以及如果这个技术是依赖「决定性(determinism)」?答:我们开发的技术将瓶颈从空间密集型转移到逻辑密集型,传统根据地理区域(空间密度)来切割游戏世界的Shar
- 揭秘Prompt Engineering 提示词工程(附学习文档)
LLM.
prompt人工智能ai大模型大模型提示词工程大语言模型LLM
PromptEngineering概览何为Prompt在自然语言处理领域,尤其是与大型语言模型(LLM)互动时,Prompt起着至关重要的作用。形象地说:LLM是金矿:大型语言模型如同深藏不露的金矿,蕴藏着巨大的知识与创造力潜力。Prompt是钥匙:而Prompt,则是开启这座金矿的钥匙。通过精心设计的问题或指令(Prompt),我们能引导模型产生特定的、有价值的输出,如文章创作、代码编写、问题解
- LLM Weekly(2025.03.03-03.09)
UnknownBody
LLMDailyLLMWeekly语言模型人工智能
网络新闻QwQ-32B:拥抱强化学习的力量。研究人员推出了QwQ-32B,这是一个拥有320亿参数的模型,它利用强化学习来提升推理能力。尽管参数较少,但通过整合类似智能体的推理和反馈机制,QwQ-32B的表现可与更大规模的模型相媲美。该模型可在HuggingFace平台上获取。**人工智能领域的先驱安德鲁·巴托(AndrewBarto)和理查德·萨顿(RichardSutton)因对强化学习的开创
- Vision Transformer (ViT):将Transformer带入计算机视觉的革命性尝试(代码实现)
阿正的梦工坊
DeepLearningDLPaperstransformer计算机视觉深度学习
VisionTransformer(ViT):将Transformer带入计算机视觉的革命性尝试作为一名深度学习研究者,如果你对自然语言处理(NLP)领域的Transformer架构了如指掌,那么你一定不会对它在序列建模中的强大能力感到陌生。然而,2021年由GoogleResearch团队在ICLR上发表的论文《ANIMAGEISWORTH16x16WORDS:TRANSFORMERSFORIM
- LLM大模型技术实战6:一文总结大模型微调方法
AIG暴躁猫叔
人工智能深度学习机器学习
大模型会成为AI时代的一项基础设施。作为像水、电一样的基础设施,预训练大模型这样的艰巨任务,只会有少数技术实力强、财力雄厚的公司去做。绝大多数人,是水、电的应用者。对这部分人来说,掌握如何用好大模型的技术,更加重要。用好大模型的第一个层次,是掌握提示词工程(PromptEngineering)用好大模型的第二个层次,是大模型的微调(FineTuning),这也是今天这篇文章的主题。为什么要对大模型
- Hoarder:快速高效的数字取证与事件响应工具
裴若音Nola
Hoarder:快速高效的数字取证与事件响应工具HoarderThisscriptismadetocollectthemostvaliableartifactsforforeniscsorincidentreponseinvestigationratherthanimagingthewholehardrive.项目地址:https://gitcode.com/gh_mirrors/hoa/Hoar
- 逆向工程基础
Smile灬凉城666
网络安全逆向工程安全
一、定义与目的定义:逆向工程(ReverseEngineering)是一种产品设计技术再现过程,即通过对已有产品进行拆解、分析、研究和再设计,以获取其设计原理、技术规格等信息。目的:在不能轻易获得必要的生产信息或设计文档的情况下,通过逆向工程推导出产品的设计原理,以支持产品仿制、改进、维护或修复等需求。二、基础知识编程语言基础:C语言:C语言是逆向工程的基础语言之一,因为它与底层硬件和系统调用密切
- 逆向工程是什么?
不知道是谁2
逆向工程科普
逆向工程(ReverseEngineering,RE)是一种技术实践,主要用于分析和理解已存在的软件、硬件、文档或其他复杂系统的内部结构和工作原理。它的目标不是直接复制它们,而是通过分解、研究和重现其设计或实现过程,以便于修改、改进、学习、维护或者创建兼容组件。在软件领域,逆向工程师可能会反汇编二进制代码以查看原始源代码,解密加密程序,或者分析API和系统架构。这有助于破解软件、调试未公开的代码、
- 软件逆向工程
macity
笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、软件逆向工程是什么?二、重构是什么?三、再工程是什么?四、总结前言软件逆向工程的相关知识。一、软件逆向工程是什么?软件逆向工程(SoftwareReverseEngineering)又称软件反向工程,是指从可运行的程序系统出发,运用解密、反汇编、系统分析、程序理解等多种计算机技术,对软件的结构、流程、算法、代码等进行逆
- 基于Nodejs的你划我猜词库管理系统+源码+高分项目
墨痕_777
python
你划我猜词库管理系统本博文提供了完整的代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。word-manage前端代码npmrunserve运行前端项目npmrunbuild打包生产环境代码npmruntest打包测试环境代码运行系统先打包前端代码npmrunbuild,放在static文件夹nodeapp.js项目运行在2900端口word表设计title词语hard难
- 探索未来:FacebookResearch的JEPa项目详解
瞿旺晟
探索未来:FacebookResearch的JEPa项目详解去发现同类优质开源项目:https://gitcode.com/项目简介是FacebookResearch推出的一个开源项目,全称为"JointEmbeddingofProgramsandAttributes"。它是一个用于程序理解和属性预测的深度学习框架,旨在提升代码的理解和自动化程度,为开发者提供更智能的编程辅助工具。技术分析**1.
- Spike Neural Network Introduction and Research Directions
Debug_Snail
SNNNeuralnetwork人工智能AIGC
1.SNNs是一类神经网络,其中的神经元通过脉冲(spikes)来传递信息,而不是像传统的人工神经网络中那样使用实数值激活。SNNs更接近生物学上的神经系统,因为生物神经元也是通过电信号脉冲来传递信息的。与传统神经网络相比,SNNs具有以下几个特点:更低的功耗-因为只在发生脉冲时才激活神经元,所以整体功耗会比传统神经网络低很多。这使得SNNs很适合应用在对功耗要求非常严格的场景,如边缘计算。时序编
- mongodb自动分片
Tgor
mongodb
mongodb自动分片标签(空格分隔):Mongodb操作步骤1、config配置库启动:mongodb--dbpath=D:\Data\dbs\shard\config--port22222、mongos指定config库启动:mongos--port3333--configdb=morton:22223、mongod分片库1启动:mongod--dbpath=D:\Data\dbs\shard
- 探索C4模型:可视化软件设计的新工具
姬如雅Brina
探索C4模型:可视化软件设计的新工具c4Cinfourfunctions项目地址:https://gitcode.com/gh_mirrors/c4/c4什么是C4模型?是一种用于视觉化和描述软件系统的结构和上下文的框架。由RichardSwiericzek开发并维护,它提供了一种简洁、直观的方式来描绘代码库、组件、类和它们之间的关系。C4模型的主要目标是帮助团队更好地理解和交流系统的设计。技术分
- 《ChatGPT Prompt Engineering for Developers》课程-提示词原则
evil-tomato
LLMchatgpt人工智能pythonai
编写Prompt的原则本章的主要内容为编写Prompt的原则,在本章中,我们将给出两个编写Prompt的原则与一些相关的策略,你将练习基于这两个原则来编写有效的Prompt,从而便捷而有效地使用LLM。一、环境配置本教程使用OpenAI所开放的ChatGPTAPI,因此你需要首先拥有一个ChatGPT的API_KEY(也可以直接访问官方网址在线测试),然后需要安装openai的第三方库首先需要安装
- AI Prompt 提示词工程入门指南:新手小白快速上手
机器学习司猫白
人工智能prompt
近年来,人工智能(AI)发展迅猛,特别是大语言模型(LLMs)(如ChatGPT、Claude、Gemini、Llama等)的广泛应用,让人们可以用自然语言与AI进行互动。而提示词工程(PromptEngineering),即如何设计有效的提示词,已经成为一项重要技能。本篇博客专为新手小白打造,帮助你快速掌握Prompt工程的基础,学会如何撰写高质量的提示词,让AI更精准地理解你的需求,并产出最优
- 分片(sharding)和复制(replication)是怎样工作的?思维导图 代码示例(java 架构)
用心去追梦
java架构开发语言
分片(Sharding)和复制(Replication)是MongoDB中用于提升性能、可用性和数据冗余的关键特性。它们各自解决不同的问题,并且可以一起使用以提供更强大的数据库解决方案。分片与复制的工作原理-思维导图概要您可以创建一个以“MongoDB分片与复制”为核心节点的思维导图,并根据以下分类展开:分片(Sharding)定义将数据分布在多个服务器上目的水平扩展存储容量提高读写吞吐量组件配置
- 【从0到1构建高并发后端系统:Spring Boot + Redis + RabbitMQ实战指南】
小怪兽9699
springboot
一、架构演进路径图图1:从单体架构到微服务集群的演进过程二、核心优化策略与落地实践1.数据库优化方案分库分表实践://ShardingSphere分片策略配置spring:shardingsphere:datasource:names:ds0,ds1rules:sharding:tables:order:actual-data-nodes:ds$->{0..1}.order_$->{0..3}ta
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- Git常用命令全面分类总结
向贤
技术面试git
Git常用命令全面分类总结以下是Git常用命令的全面分类总结,以及gitreset--hard的详细解析,结合结构化的说明和示例,便于我们理解和记忆:一、Git核心命令分类速查表1.仓库初始化与克隆命令作用示例gitinit初始化本地仓库gitinitgitclone克隆远程仓库gitclonehttps://github.com/user/repo.git2.工作区与暂存区操作命令作用示例git
- 论文阅读笔记——Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习机器人
ALOHA论文ALOHA解决了策略中的错误可能随时间累积,且人类演示可能是非平稳的,提出了ACT(ActionChunkingwithTransformers)方法。ActionChunking模仿学习中,compoundingerror是致使任务失败的主要原因。具体来说,当智能体(agent)在测试时遇到训练集中未见过的情况时,可能会产生预测误差。这些误差会逐步累积,导致智能体进入未知状态,最终
- linux识别不到板载raid,linux server 不要用bios自带的板载raid
weixin_39699163
linux识别不到板载raid
IfyoumeantheRAIDcontrollerbuiltintothemotherboard,I'dAVOIDIT.It'snottruehardwareRAID.linuxMotherboardRAIDisregardedastheworstofRAIDs,asitismotherboardspecific,thereareseveralonlineinstancesofthemother
- 架构师之路——设计模式篇(总览)
周努力.
设计模式java
1.前言在1994年,由ErichGamma、RichardHelm、RalphJohnson和JohnVlissides四人合著出版了一本名为DesignPatterns-ElementsofReusableObject-OrientedSoftware(中文译名:设计模式-可复用的面向对象软件元素)的书,该书首次提到了软件开发中设计模式的概念。设计模式——这四个字不仅仅是一个通用技能的名称,更
- Prompt Engineering 指南
陈小龙丶呐喊
人工智能
使用ChatGPT辅助工作的朋友经常会搜索到一些文章,例如:github上点赞数100K+的项目《AwesomeChatGPTPrompts》诸如此类。它的场景都是在ChatGPT的聊天网页上,使用提示词来执行特定的,一次性的任务。但是大预言模型(LLM)的作用不仅于此,使用它构建业务系统或者给业务系统赋能的能力现阶段还未完全开发出来,我相信在不久之后,尤其是国产LLM成熟、相关监管法规落实之后,
- 【OpenAI官方课程】第一课:GPT-Prompt 的构建原则指南
euffylee
ChatGPTPrompt官方课程gptprompt人工智能
欢迎来到ChatGPT开发人员提示工程课程(ChatGPTPromptEngineeringforDevelopers)!本课程将教您如何通过OpenAIAPI有效地利用大型语言模型(LLM)来创建强大的应用程序。本课程由OpenAI的IsaFulford和DeepLearning.AI的AndrewNg主讲,深入了解LLM的运作方式,提供即时工程的最佳实践,并演示LLMAPI在各种应用程序中的使
- Laravel如何实现MySQL分库分表的功能?使用场景是什么?底层原理是什么?
快点好好学习吧
Laravellaravelmysqlphp
一、MySQL分库分表的定义1.核心定义分库(Sharding):将数据分散到多个数据库中,以减轻单个数据库的压力。分表(Partitioning):将一个大表拆分为多个小表,通常基于某种规则(如用户ID或时间戳)。目的:提高系统的扩展性、性能和可用性。二、使用场景1.常见使用场景高并发系统:数据量巨大且访问频率高的场景(如电商平台、社交网络)。大数据存储:单表数据量超过千万甚至亿级时,需要分表以
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,