- 【Qwen2部署实战】Qwen2初体验:用Transformers打造智能聊天机器人
寻道AI小兵
AI大模型Qwen系列探索实践人工智能AIGC语言模型AI编程Qwen
系列篇章No.文章1【Qwen部署实战】探索Qwen-7B-Chat:阿里云大型语言模型的对话实践2【Qwen2部署实战】Qwen2初体验:用Transformers打造智能聊天机器人3【Qwen2部署实战】探索Qwen2-7B:通过FastApi框架实现API的部署与调用4【Qwen2部署实战】Ollama上的Qwen2-7B:一键部署大型语言模型指南5【Qwen2部署实战】llama.cpp:
- conda进行transformers安装
大多_C
conda
首先建立新环境condacreate-nmyenvpython=3.8安装numpy和pytorchcondainstallnumpycondainstallpytorchtorchvisiontorchaudiocpuonly-cpytorch-cconda-forge其余的一些环境配置huggingface_hub0.16.4py_0huggingfaceimportlib-metadata6
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中Mamba有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉论文笔记目标跟踪ECCVMamba状态空间模型人工智能
MambaIR:状态空间模型图像恢复的简单基线近年来,图像恢复技术取得了长足的进步,这在很大程度上归功于现代深度神经网络的发展,如CNN和Transformers。然而,现有的修复骨干往往面临全局接受域和高效计算之间的两难困境,阻碍了它们在实践中的应用。最近,选择性结构化状态空间模型,特别是改进的Mamba模型,在线性复杂度的长程依赖建模方面显示出了巨大的潜力,为解决上述困境提供了一条途径。然而,
- 【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
LDG_AGI
Pipeline人工智能机器学习计算机视觉python时序数据库大数据自然语言处理
目录一、引言二、填充蒙版(fill-mask)2.1概述2.2技术原理2.2.1BERT模型的基本概念2.2.2BERT模型的工作原理2.2.3BERT模型的结构2.2.4BERT模型的应用2.2.5BERT模型与Transformer的区别和联系2.3应用场景2.4pipeline参数2.4.1pipeline对象实例化参数2.4.2pipeline对象使用参数2.4.3pipeline返回参数
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- 【HuggingFace Transformers】BertIntermediate 和 BertPooler源码解析
CS_木成河
HuggingFace深度学习人工智能bertpython大模型Transformer
BertIntermediate和BertPooler源码解析1.介绍1.1位置与功能1.2相似点与不同点2.源码解析2.1BertIntermediate源码解析2.2BertPooler源码解析1.介绍1.1位置与功能(1)BertIntermediate位置:位于BertLayer的注意力层(BertSelfAttention)和输出层(BertOutput)之间。功能:它执行一个线性变换(
- 在浏览器上使用transformers.js运行(WebGPU)RMBG-1.4进行抠图(背景移除)
shizidushu
WebGPUtransformers.jsRMBG-1.4抠图
在浏览器上使用transformers.js运行(WebGPU)RMBG-1.4进行抠图(背景移除)说明:首次发表日期:2024-08-28官方Github仓库地址:https://github.com/xenova/transformers.js/tree/main/examples/remove-background-client准备下载onnx模型文件:https://huggingface
- LLM-项目详解(一):Chinese-LLaMA-Alpaca【transformers/models/llama/modeling_llama.py文件】
u013250861
#LLM/经典模型llama
site-packages/transformers/models/llama/modeling_llama.py#coding=utf-8#Copyright2022EleutherAIandtheHuggingFaceInc.team.Allrightsreserved.##ThiscodeisbasedonEleutherAI'sGPT-NeoXlibraryandtheGPT-NeoX#a
- 快速使用transformers的pipeline实现各种深度学习任务
E寻数据
huggingface计算机视觉nlp深度学习人工智能pythonpipelinetransformers
目录引言安装情感分析文本生成文本摘要图片分类实例分割目标检测音频分类自动语音识别视觉问答文档问题回答图文描述引言在这篇中文博客中,我们将深入探讨使用transformers库中的pipeline()函数,它为预训练模型提供了一个简单且快速的推理方法。pipeline()函数支持多种任务,包括文本分类、文本生成、摘要生成、图像分类、图像分割、对象检测、音频分类、自动语音识别、视觉问题回答、文档问题回
- 1-pipeline()函数-transformers-python库
Flora-pi
人工智能人工智能
pipeline()函数pipeline()函数是Transformers库中最基本的工具。Transformer模型用于解决各种NLP任务,Transformers库提供了创建和使用这些模型的功能。我们先来看一看pipeline()是如何解决NLP问题。文章目录`pipeline()`函数情感分析目前可用的一些pipelines有:zero-shot-classification(零样本分类)t
- 大模型训练优化方法
少喝冰美式
人工智能大语言模型ai大模型大模型应用LLM大模型训练计算机技术
写在前面在训练模型尤其是大模型的时候,如何加快训练速度以及优化显存利用率是一个很关键的问题。本文主要参考HF上的一篇文章:https://huggingface.co/docs/transformers/perf_train_gpu_one,以及笔者在实际训练中的一些经验,给出一些比较实用的方法。先看一个总览的表:方法加快训练速度优化显存利用率BatchsizechoiceYesYesGradie
- 论文:Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
Ian_Wonder
论文阅读
论文:Retrieval-AugmentedGenerationforKnowledge-IntensiveNLPTaskscode:https://github.com/huggingface/transformerscode:https://github.com/huggingface/transformers/blob/master/model_cards/facebook/rag-toke
- 欺诈文本分类微调(六):Lora单卡训练
沉下心来学鲁班
微调分类人工智能机器学习语言模型微调
1.引言前面欺诈文本分类微调(四):构造训练/测试数据集已经构造出了数据集,更之前的欺诈文本分类微调(一):基座模型选型选好了基座模型,这篇文章将基于构造出的数据集和选定的模型进行欺诈文本分类的微调训练。关于微调方法,我们将使用比较普遍的Lora:在模型中注入低秩矩阵的方式。关于训练器,使用transformers库中提供的Trainer类。2.数据准备2.1加载数据导入要使用的基础包。impor
- 使用 Hugging Face Transformers 创建文本生成模型
Envyᥫᩣ
人工智能
文本生成是自然语言处理中的一个重要任务,在聊天机器人、自动写作等领域有着广泛的应用。HuggingFaceTransformers是一个流行的Python库,它提供了大量预训练的模型以及API来实现各种自然语言处理任务。本文将详细介绍如何使用HuggingFaceTransformers库来创建一个简单的文本生成模型,并且展示如何使用该模型生成新的文本。文本生成是自然语言处理中的一项重要技术,可以
- transformers调用llama的方式
myccver
llama深度学习pytorch
transformers调用llama的使用方式不同版本llama对应的transformers库版本llama2llama3Meta-Llama-3-8B-InstructMeta-Llama-3-8Bllama3.1Meta-Llama-3.1-8B-Instruct不同版本llama对应的transformers库版本#llama2pipinstalltorch==1.13.1+cu116t
- chatGLM-6B部署报错quantization_kernels_parallel.so‘ (or one of its dependencies). Try using the full pat
FL1623863129
环境配置深度学习
用python部署chatglm2时候报错:FileNotFoundError:Couldnotfindmodule'C:\Users\Administrator\.cache\huggingface\modules\transformers_modules\chatglm2-6b-int4\quantization_kernels_parallel.so'(oroneofitsdependenc
- 【学习总结】Python transformers AutoTokenizer encode 出现的 101 和 102
爱学习的小道长
AIpython学习AI编程
1.代码展示:fromtransformersimportAutoTokenizer,AutoModelmodel_name="bert-base-chinese"tokenizer=AutoTokenizer.from_pretrained(model_name)model=AutoModel.from_pretrained(model_name)print(len(tokenizer.voca
- 深度学习踩坑记录(持续更新)
芒果不茫QAQ
深度学习人工智能
目录4060显卡cuda版本异常transformers初始化TrainingArguments时output_dir指定问题4060显卡cuda版本异常环境:torch1.11.0+cu113程序报错RuntimeError:nvrtc:error:invalidvaluefor--gpu-architecture(-arch)可能原因与解决办法4060显卡是sm_89架构,支持11.7以上cu
- beam search原理与常见实现,与直接sample的区别
samoyan
LLM面试transformer面试
目录BeamSearch原理1.基本概念2.工作流程3.特点BeamSearch与直接Sample的区别1.确定性与随机性2.结果多样性3.性能与效率4.应用场景常见的BeamSearch实现1.TensorFlow库2.PyTorch库3.HuggingFace的Transformers库算法库和工具BeamSearch原理1.基本概念BeamSearch是一种启发式图搜索算法,常用于自然语言处
- 聊聊transformers库; 微软推出ZeRO++技术:优化大型AI模型训练时间和成本
go2coding
AI日报人工智能microsoft深度学习
AI新闻微软推出ZeRO++技术:优化大型AI模型训练时间和成本摘要:据报道,微软研究人员最近发布了一项名为ZeRO++的新技术,旨在优化训练大型AI模型时常遇到的数据传输成本和带宽限制问题,可大幅减少训练时间和成本。ZeRO++建立在现有的ZeRO传输技术基础上,并通过提供增强的通信策略来提高训练效率并降低成本。通过对权重进行量化,ZeRO++可以减少参数通信量,同时保持训练精度。为了最小化通信
- Transformers中的Beam Search高效实现
zenRRan
算法python深度学习机器学习搜索引擎
来自:纸鱼AI目前Github上的大部分实现均针对于单个样本的beamsearch,而本文主要介绍了针对单个样本和批量样本的beamsearch实现。本文代码可以点击“查看原文”找到BeamSearch的原理设输入序列为,输出序列为,我们需要建模如下概率分布:(公式向右滑动)在执行解码时,我们有几种选词方案,第一种则是穷举所有可能序列,这种成本过大无法承受。如果每一步都选择概率最大的词,这种解码方
- flan_t5的使用
hehui0921
huggingfacelangchain
https://huggingface.co/docs/transformers/model_doc/flan-t5
- 【HuggingFace】Transformers-BertAttention逐行代码解析
Taylor不想被展开
PythonTransformer深度学习自然语言处理transformer计算机视觉
本文基于HuggingFace的2.6.0版本的Transformers包进行解析,不同版本间略有差异,但无伤大雅。I.Self-attention的HuggingFace实现(I).多头自注意力的实现原理关于Transformer的讲解不胜其数,这里就不多写了。本文主要写一下多头自注意力机制的操作。我们知道,多头自注意力是要分多个head分别进行自注意力操作,然后将每个head的计算结果conc
- phpy :PHP 与 Python 互调用库,为 PHP 引入 Python 生态,PHP 也可以写 AI 了
phppythonai开发
phpy是识沃团队最新推出的开源项目,目标是为PHP引入Python生态,来弥补PHP生态的空缺和不足。phpy使得PHP可以调用所有Python的包。包括当下非常流行的PyTorch、transformers、TensorFlow等AI库,以及Numpy、Pandas、Scikit等科学计算库,还可以使用PyQt、wxPython等图形界面库。GitHub地址:https://github.co
- transformers之agent
月疯
【NLP】深度学习
HuggingFace发布了TransformersAgent,一种利用自然语言从精选工具集合中选择工具并完成各种任务的代理。此举使其与LangChain作为构建企业通用人工智能(AGI)应用程序的新兴框架直接竞争,因为它很像LangChain工具和代理。什么是TransformersAgents?简单来说它在转换器之上提供了一个自然语言API:定义了一组精选工具并设计了一个代理来解释自然语言并使
- transformers重要组件(模型与分词器)
月疯
【NLP】人工智能
1、模型:fromtransformersimportAutoModelcheckpoint="distilbert-base-uncased-finetuned-sst-2-english"model=AutoModel.from_pretrained(checkpoint)除了像之前使用AutoModel根据checkpoint自动加载模型以外,我们也可以直接使用模型对应的Model类,例如B
- Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting
AyyB
摘要多步(尺度)预测通常包含一个复杂的输入组合——包括静态(即时不变)协变量、已知的未来输入,以及其他仅在过去观察到的外生时间序列——没有任何关于它们如何与目标相互作用的先验信息。几种深度学习方法已经被提出,但它们通常是“黑盒”模型,并不能阐明它们如何使用实际场景中出现的全部输入。在本文中,我们介绍了时间融合变压器(TFT)——一种新的基于注意的架构,它结合了高性能的多步预测和对时间动态的可解释的
- 【Transformer-Hugging Face 05/10】 使用 AutoClass 加载预训练实例
无水先生
NLP高级和ChatGPT人工智能transformer深度学习人工智能
目录一、说明二、自动分词器三、自动图像处理器四、自动特征提取器五、自动处理器六、自动模型七、在TensorFlow中八、自动骨干网一、说明 由于有如此多不同的Transformer架构,为您的检查点创建一个架构可能具有挑战性。作为Transformers核心理念的一部分,使库易于、简单且灵活地使用,它会AutoClass从给定的检查点自动推断并加载正确的架构。该from_pretrained()
- Elasticsearch:通过 ingest pipeline 对大型文档进行分块
Elastic 中国社区官方博客
ElasticsearchAIElasticelasticsearch大数据搜索引擎全文检索python人工智能
在我之前的文章“Elasticsearch:使用LangChain文档拆分器进行文档分块”中,我详述了如何通过LangChain对大的文档进行分块。那个分块的动作是通过LangChain在Python中进行实现的。对于使用版权的开发者来说,我们实际上是可以通过ingestpipeline来完成这个操作的。这个交互式笔记本将:将模型sentence-transformers__all-minilm-
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep