废话不讲,直切正题。
搭建环境:Centos x 6.4 64bit
1、安装JDK
我这里用的是64位机,要下载对应的64位的JDK,下载地址:http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk7-downloads-1880260-zhs.html,选择对应的JDK版本,解压JDK,然后配置环境变量,
[html]
view plain copy
- vi /etc/profile
注:这里有的人喜欢配置在当前用户里,我这里是配置的全局。
[html]
view plain copy
- export PATH
- export JAVA_HOME=/opt/jdk1.7
- export PATH=$PATH:$JAVA_HOME/bin
-
- source /etc/profile
测试下JDK是否安装成功: java -version
[html]
view plain copy
- java version "1.7.0_45"
- Java(TM) SE Runtime Environment (build 1.7.0_45-b18)
- Java HotSpot(TM) 64-Bit Server VM (build 24.45-b08, mixed mode)
2、编译前的准备(maven)
maven官方下载地址,可以选择源码编码安装,这里就直接下载编译好的 就可以了
[html]
view plain copy
- wget http://mirror.bit.edu.cn/apache/maven/maven-3/3.1.1/binaries/apache-maven-3.1.1-bin.zip
解压文件后,同样在/etc/profie里配置环境变量
[html]
view plain copy
- export MAVEN_HOME=/opt/maven3.1.1
- export PATH=$PATH:$MAVEN_HOME/bin
验证配置是否成功: mvn -version
[html]
view plain copy
- Apache Maven 3.1.1 (0728685237757ffbf44136acec0402957f723d9a; 2013-09-17 23:22:22+0800)
- Maven home: /opt/maven3.1.1
- Java version: 1.7.0_45, vendor: Oracle Corporation
- Java home: /opt/jdk1.7/jre
- Default locale: en_US, platform encoding: UTF-8
- OS name: "linux", version: "2.6.32-358.el6.x86_64", arch: "amd64", family: "unix"
3、编译hadoop
这个地方你将会遇到各式各样的头疼问题
首先官方下载hadoop源码
[html]
view plain copy
- wget http://mirrors.cnnic.cn/apache/hadoop/common/hadoop-2.2.0/hadoop-2.2.0-src.tar.gz
如果是你32bit的机器,可以直接下载官方已经编译好的包,64bit的机子跑编译好的包跑不了。
由于maven国外服务器可能连不上,先给maven配置一下国内镜像,在maven目录下,conf/settings.xml,在<mirrors></mirros>里添加,原本的不要动
[html]
view plain copy
- <mirror>
- <id>nexus-osc</id>
- <mirrorOf>*</mirrorOf>
- <name>Nexusosc</name>
- <url>http://maven.oschina.net/content/groups/public/</url>
- </mirror>
同样,在<profiles></profiles>内新添加
[html]
view plain copy
- <profile>
- <id>jdk-1.7</id>
- <activation>
- <jdk>1.7</jdk>
- </activation>
- <repositories>
- <repository>
- <id>nexus</id>
- <name>local private nexus</name>
- <url>http://maven.oschina.net/content/groups/public/</url>
- <releases>
- <enabled>true</enabled>
- </releases>
- <snapshots>
- <enabled>false</enabled>
- </snapshots>
- </repository>
- </repositories>
- <pluginRepositories>
- <pluginRepository>
- <id>nexus</id>
- <name>local private nexus</name>
- <url>http://maven.oschina.net/content/groups/public/</url>
- <releases>
- <enabled>true</enabled>
- </releases>
- <snapshots>
- <enabled>false</enabled>
- </snapshots>
- </pluginRepository>
- </pluginRepositories>
- </profile>
编译clean
[html]
view plain copy
- cd hadoop2.2.0-src
- mvn clean install –DskipTests
发现异常
[html]
view plain copy
- [ERROR] Failed to execute goal org.apache.hadoop:hadoop-maven-plugins:2.2.0:protoc (compile-protoc) on project hadoop-common: org.apache.maven.plugin.MojoExecutionException: 'protoc --version' did not return a version -> [Help 1]
- [ERROR]
- [ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
- [ERROR] Re-run Maven using the -X switch to enable full debug logging.
- [ERROR]
- [ERROR] For more information about the errors and possible solutions, please read the following articles:
- [ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
- [ERROR]
- [ERROR] After correcting the problems, you can resume the build with the command
- [ERROR] mvn <goals> -rf :hadoop-common
hadoop2.2.0编译需要protoc2.5.0的支持,所以还要下载protoc,下载地址:https://code.google.com/p/protobuf/downloads/list,要下载2.5.0版本噢
对protoc进行编译安装前先要装几个依赖包:gcc,gcc-c++,make 如果已经安装的可以忽略
[html]
view plain copy
- yum install gcc
- yum intall gcc-c++
- yum install make
安装protoc
[html]
view plain copy
- tar -xvf protobuf-2.5.0.tar.bz2
- cd protobuf-2.5.0
- ./configure --prefix=/opt/protoc/
- make && make install
安装完配置下环境变量,就不多说了,跟上面过程一样。
别急,还不要着急开始编译安装,不然又是各种错误,需要安装cmake,openssl-devel,ncurses-devel依赖
[html]
view plain copy
- yum install cmake
- yum install openssl-devel
- yum install ncurses-devel
目前的2.2.0 的Source Code 压缩包解压出来的code有个bug 需要patch后才能编译。否则编译hadoop-auth 会提示下面错误:
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:2.5.1:testCompile (default-testCompile) on project hadoop-auth: Compilation failure: Compilation failure:
[ERROR] /home/chuan/trunk/hadoop-common-project/hadoop-auth/src/test/java/org/apache/hadoop/security/authentication/client/AuthenticatorTestCase.java:[84,13] cannot access org.mortbay.component.AbstractLifeCycle
[ERROR] class file for org.mortbay.component.AbstractLifeCycle not found
Patch :https://issues.apache.org/jira/browse/HADOOP-10110
ok,现在可以进行编译了,
[html]
view plain copy
- mvn package -Pdist,native -DskipTests -Dtar
现在可以拿出你的手机,玩会游戏了,慢慢等吧!
[html]
view plain copy
- [INFO] ------------------------------------------------------------------------
- [INFO] Reactor Summary:
- [INFO]
- [INFO] Apache Hadoop Main ................................ SUCCESS [3.709s]
- [INFO] Apache Hadoop Project POM ......................... SUCCESS [2.229s]
- [INFO] Apache Hadoop Annotations ......................... SUCCESS [5.270s]
- [INFO] Apache Hadoop Assemblies .......................... SUCCESS [0.388s]
- [INFO] Apache Hadoop Project Dist POM .................... SUCCESS [3.485s]
- [INFO] Apache Hadoop Maven Plugins ....................... SUCCESS [8.655s]
- [INFO] Apache Hadoop Auth ................................ SUCCESS [7.782s]
- [INFO] Apache Hadoop Auth Examples ....................... SUCCESS [5.731s]
- [INFO] Apache Hadoop Common .............................. SUCCESS [1:52.476s]
- [INFO] Apache Hadoop NFS ................................. SUCCESS [9.935s]
- [INFO] Apache Hadoop Common Project ...................... SUCCESS [0.110s]
- [INFO] Apache Hadoop HDFS ................................ SUCCESS [1:58.347s]
- [INFO] Apache Hadoop HttpFS .............................. SUCCESS [26.915s]
- [INFO] Apache Hadoop HDFS BookKeeper Journal ............. SUCCESS [17.002s]
- [INFO] Apache Hadoop HDFS-NFS ............................ SUCCESS [5.292s]
- [INFO] Apache Hadoop HDFS Project ........................ SUCCESS [0.073s]
- [INFO] hadoop-yarn ....................................... SUCCESS [0.335s]
- [INFO] hadoop-yarn-api ................................... SUCCESS [54.478s]
- [INFO] hadoop-yarn-common ................................ SUCCESS [39.215s]
- [INFO] hadoop-yarn-server ................................ SUCCESS [0.241s]
- [INFO] hadoop-yarn-server-common ......................... SUCCESS [15.601s]
- [INFO] hadoop-yarn-server-nodemanager .................... SUCCESS [21.566s]
- [INFO] hadoop-yarn-server-web-proxy ...................... SUCCESS [4.754s]
- [INFO] hadoop-yarn-server-resourcemanager ................ SUCCESS [20.625s]
- [INFO] hadoop-yarn-server-tests .......................... SUCCESS [0.755s]
- [INFO] hadoop-yarn-client ................................ SUCCESS [6.748s]
- [INFO] hadoop-yarn-applications .......................... SUCCESS [0.155s]
- [INFO] hadoop-yarn-applications-distributedshell ......... SUCCESS [4.661s]
- [INFO] hadoop-mapreduce-client ........................... SUCCESS [0.160s]
- [INFO] hadoop-mapreduce-client-core ...................... SUCCESS [36.090s]
- [INFO] hadoop-yarn-applications-unmanaged-am-launcher .... SUCCESS [2.753s]
- [INFO] hadoop-yarn-site .................................. SUCCESS [0.151s]
- [INFO] hadoop-yarn-project ............................... SUCCESS [4.771s]
- [INFO] hadoop-mapreduce-client-common .................... SUCCESS [24.870s]
- [INFO] hadoop-mapreduce-client-shuffle ................... SUCCESS [3.812s]
- [INFO] hadoop-mapreduce-client-app ....................... SUCCESS [15.759s]
- [INFO] hadoop-mapreduce-client-hs ........................ SUCCESS [6.831s]
- [INFO] hadoop-mapreduce-client-jobclient ................. SUCCESS [8.126s]
- [INFO] hadoop-mapreduce-client-hs-plugins ................ SUCCESS [2.320s]
- [INFO] Apache Hadoop MapReduce Examples .................. SUCCESS [9.596s]
- [INFO] hadoop-mapreduce .................................. SUCCESS [3.905s]
- [INFO] Apache Hadoop MapReduce Streaming ................. SUCCESS [7.118s]
- [INFO] Apache Hadoop Distributed Copy .................... SUCCESS [11.651s]
- [INFO] Apache Hadoop Archives ............................ SUCCESS [2.671s]
- [INFO] Apache Hadoop Rumen ............................... SUCCESS [10.038s]
- [INFO] Apache Hadoop Gridmix ............................. SUCCESS [6.062s]
- [INFO] Apache Hadoop Data Join ........................... SUCCESS [4.104s]
- [INFO] Apache Hadoop Extras .............................. SUCCESS [4.210s]
- [INFO] Apache Hadoop Pipes ............................... SUCCESS [9.419s]
- [INFO] Apache Hadoop Tools Dist .......................... SUCCESS [2.306s]
- [INFO] Apache Hadoop Tools ............................... SUCCESS [0.037s]
- [INFO] Apache Hadoop Distribution ........................ SUCCESS [21.579s]
- [INFO] Apache Hadoop Client .............................. SUCCESS [7.299s]
- [INFO] Apache Hadoop Mini-Cluster ........................ SUCCESS [7.347s]
- [INFO] ------------------------------------------------------------------------
- [INFO] BUILD SUCCESS
- [INFO] ------------------------------------------------------------------------
- [INFO] Total time: 11:53.144s
- [INFO] Finished at: Fri Nov 22 16:58:32 CST 2013
- [INFO] Final Memory: 70M/239M
- [INFO] ------------------------------------------------------------------------
直到看到上面的内容那就说明编译完成了。
编译后的路径在:hadoop-2.2.0-src/hadoop-dist/target/hadoop-2.2.0
[html]
view plain copy
- [root@localhost bin]# ./hadoop version
- Hadoop 2.2.0
- Subversion Unknown -r Unknown
- Compiled by root on 2013-11-22T08:47Z
- Compiled with protoc 2.5.0
- From source with checksum 79e53ce7994d1628b240f09af91e1af4
- This command was run using /data/hadoop-2.2.0-src/hadoop-dist/target/hadoop-2.2.0/share/hadoop/common/hadoop-common-2.2.0.jar
可以看出hadoop的版本
[html]
view plain copy
- [root@localhost hadoop-2.2.0]# file lib//native/*
- lib//native/libhadoop.a: current ar archive
- lib//native/libhadooppipes.a: current ar archive
- lib//native/libhadoop.so: symbolic link to `libhadoop.so.1.0.0'
- lib//native/libhadoop.so.1.0.0: <span style="color:#ff0000;">ELF 64-bit LSB shared object, x86-64, version 1</span> (SYSV), dynamically linked, not stripped
- lib//native/libhadooputils.a: current ar archive
- lib//native/libhdfs.a: current ar archive
- lib//native/libhdfs.so: symbolic link to `libhdfs.so.0.0.0'
- lib//native/libhdfs.so.0.0.0: <span style="color:#ff0000;">ELF 64-bit LSB shared object, x86-64, version 1</span> (SYSV), dynamically linked, not stripped
注意红色字体部分,如果下载官网的编译好的包,这里显示的是32-bit。
hadoop编译成功,下面可以来部署集群。
5、部署集群准备
两台以上机器,修改hostname, ssh免登陆,关闭防火墙等
5.1、创建新用户
[html]
view plain copy
- useradd hadoop
- su hadoop
注意以下操作有些需要root权限
5.2、修改主机名
[html]
view plain copy
- vi /etc/sysconfig/network
[html]
view plain copy
- hostname master
注销一下系统
[html]
view plain copy
- [root@master ~]#
变成master了,修改生效
5.3、修改hosts
[html]
view plain copy
- vi /etc/hosts
- 新增你的主机IP和HOSTNAME
-
- 192.168.10.10 master
- 192.168.10.11 slave1
5.4、ssh免登陆
查看ssh
[html]
view plain copy
- [root@localhost data]# rpm -qa|grep ssh
- libssh2-1.4.2-1.el6.x86_64
- openssh-5.3p1-84.1.el6.x86_64
- openssh-server-5.3p1-84.1.el6.x86_64
缺少openssh-clients,
[html]
view plain copy
- yum install openssh-clients
修改/etc/ssh/sshd_config
RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile .ssh/authorized_keys
把这三行放开保存
然后service sshd restart
现在开始配置无密登录
[html]
view plain copy
- [hadoop@master ~]$ cd /home/hadoop/
- [hadoop@master ~]$ ssh-keygen -t rsa
一路回车
[html]
view plain copy
- [hadoop@master ~]$ cd .ssh/
- [hadoop@master .ssh]$ cp id_rsa.pub authorized_keys
- [hadoop@master .ssh]$ chmod 600 authorized_keys
把authorized_keys复制到其他要无密的机器上
[html]
view plain copy
- [hadoop@master .ssh]$ scp authorized_keys [email protected]:/home/hadoop/.ssh/
记得这里是以要以root权限过去,不然会报权限错误
设置.ssh目录权限
[plain]
view plain copy
- chmod 700 -R .ssh
[plain]
view plain copy
- 每台机子都要无密钥登录,把每台机子产生的密钥添加到文件中就ok 了 cat id_rsa.pub >> .ssh/authorized_keys
一般情况到这里就可以无密登录了,可是我怎么还是需要密码,经过一翻搜寻才知道这是centos6.4版本的问题,《关于centos ssh无密登录失败的记录》
[html]
view plain copy
- [hadoop@master .ssh]$ ssh slave1
- Last login: Mon Nov 25 14:49:25 2013 from master
- [hadoop@slave1 ~]$
看到已经变成slave1了,说明成功鸟
6、开始集群配置工作
配置之前在要目录下创建三个目录,用来放hadooop文件和日志数据
[html]
view plain copy
- [hadoop@master ~]$mkdir -p dfs/name
- [hadoop@master ~]$mkdir -p dfs/data
- [hadoop@master ~]$mkdir -p temp
把之前编译成功的版本移到hadoop目录下,注意目录权限问题
下面就开始配置文件
6.1 hadoop-env.sh
找到JAVA_HOME,把路径改为实际地址
6.2 yarn-env.sh
同6.1
6.3 slave
配置所有slave节点
6.4 core-site.xml
[html]
view plain copy
- <property>
- <name>fs.defaultFS</name>
- <value>hdfs://master:9000</value> //系统分布式URL
- </property>
- <property>
- <name>io.file.buffer.size</name>
- <value>131072</value>
- </property>
- <property>
- <name>hadoop.tmp.dir</name>
- <value>file:/home/hadoop/temp</value>
- </property>
- <property>
- <name>hadoop.proxyuser.hadoop.hosts</name>
- <value>*</value>
- </property>
- <property>
- <name>hadoop.proxyuser.hadoop.groups</name>
- <value>*</value>
- </property>
注意fs.defaultFS为2.2.0新的变量,代替旧的:fs.default.name
6.5、hdfs-site.xml
配置namenode、datanode的本地目录信息
[html]
view plain copy
- <property>
- <name>dfs.namenode.secondary.http-address</name>
- <value>master:9001</value>
- </property>
- <property>
- <name>dfs.namenode.name.dir</name>
- <value>/home/hadoop/dfs/name</value>
- </property>
- <property>
- <name>dfs.datanode.data.dir</name>
- <value>/home/hadoop/dfs/data,/mnt/d1,/mnt/d2,/mnt/d3<table border="1" cellspacing="0" cellpadding="0" style="background:black;"><tbody><tr><td valign="top"><span style="background-color: rgb(240, 240, 240);"></value></span></td></tr></tbody></table> </property>
- <span style="white-space:pre"> </span><property>
- <name>dfs.replication</name>
- <value>3</value>
- </property>
- <span style="white-space:pre"> </span><property>
- <name>dfs.webhdfs.enabled</name>
- <span style="white-space:pre"> </span><value>true</value>
- </property>
新的:dfs.namenode.name.dir,旧:dfs.name.dir,新:dfs.datanode.name.dir,旧:dfs.data.dir
dfs.replication确定 data block的副本数目,hadoop基于rackawareness(机架感知)默认复制3份分block,(同一个rack下两个,另一个rack下一 份,按照最短距离确定具体所需block, 一般很少采用跨机架数据块,除非某个机架down了)
6.6、mapred-site.xml
配置其使用 Yarn 框架执行 map-reduce 处理程序
这个地方需要把mapred-site.xml.template复制重新命名
[html]
view plain copy
- <property>
- <name>mapreduce.framework.name</name>
- <value>yarn</value>
- </property>
- <property>
- <name>mapreduce.jobhistory.address</name>
- <value><span style="font-family: Consolas, 'Courier New', Courier, mono, serif; line-height: 18px;">master</span>:10020</value>
- </property>
- <property>
- <name>mapreduce.jobhistory.webapp.address</name>
- <value>master:19888</value>
-
- </property>
新的计算框架取消了实体上的jobtracker, 故不需要再指定mapreduce.jobtracker.addres,而是要指定一种框架,这里选择yarn. 备注2:hadoop2.2.还支持第三方的计算框架,但没怎么关注过。
配置好以后将$HADOOP_HOME下的所有文件,包括hadoop目录分别copy到其它3个节点上。
6.7、yarn-site.xml
配置ResourceManager,NodeManager的通信端口,WEB监控端口等
[html]
view plain copy
- <property>
- <name>yarn.nodemanager.aux-services</name>
- <value>mapreduce_shuffle</value>
- </property>
- <property>
- <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
- <value>org.apache.hadoop.mapred.ShuffleHandler</value>
- </property>
- <property>
- <name>yarn.resourcemanager.address</name>
- <value>master:8032</value>
- </property>
- <property>
- <name>yarn.resourcemanager.scheduler.address</name>
- <value>master:8030</value>
- </property>
- <property>
- <name>yarn.resourcemanager.resource-tracker.address</name>
- <value>master:8031</value>
- </property>
- <property>
- <name>yarn.resourcemanager.admin.address</name>
- <value>master:8033</value>
- </property>
- <property>
- <name>yarn.resourcemanager.webapp.address</name>
- <value>master:8088</value>
- </property>
[html]
view plain copy
- <table cellspacing="0" cellpadding="0" class="t1 "><tbody><tr><td valign="middle" class="td1"><p class="p1"><property></p><p class="p1"><name>yarn.nodemanager.resource.memory-mb</name> //配置内存</p><p class="p1"><value>15360</value></p><p class="p1"></property></p></td></tr></tbody></table>
[html]
view plain copy
- <table cellspacing="0" cellpadding="0" class="t1 "><tbody><tr><td valign="middle" class="td1"><p class="p1"><span style="background-color: rgb(255, 255, 255);">到这里基本配置好了,把所有复制到其他的slave节点。</span></p></td></tr></tbody></table>
7、启动hadoop
这里你可以进行环境变量设置,不举例了
7.1、格式化namenode
[html]
view plain copy
- [hadoop@master hadoop]$ cd /home/hadoop/hadoop-2.2.0/bin/
- [hadoop@master bin]$ ./hdfs namenode -format
7.2、启动hdfs
[html]
view plain copy
- [hadoop@master bin]$ cd ../sbin/
- [hadoop@master sbin]$ ./start-dfs.sh
这时候在master中输入jps应该看到namenode和secondarynamenode服务启动,slave中看到datanode服务启动
7.3、启动yarn
[html]
view plain copy
- [hadoop@master sbin]$ ./start-yarn.sh
master中应该有ResourceManager服务,slave中应该有nodemanager服务
查看集群状态:./bin/hdfs dfsadmin –report
查看文件块组成: ./bin/hdfsfsck / -files -blocks
查看各节点状态: http://192.168.10.10:50070
查看resourcemanager上cluster运行状态: http:// 192.168.10.11:8088
8、安装中要注意的事项
8.1、注意版本,机器是32bit还是64位
8.2、注意依赖包的安装
8.3、写配置文件注意”空格“,特别是从别的地方copy的时候
8.4、关闭所有节点的防火墙
如果有看到类似"no route to host"这样的异常,基本就是防火墙没关
记得关的时候要切换到root帐号
[html]
view plain copy
- (1) 重启后永久性生效:
-
- 开启:chkconfig iptables on
-
- 关闭:chkconfig iptables off
-
- (2) 即时生效,重启后失效:
-
- 开启:service iptables start
-
- 关闭:service iptables stop
8.5、开启datanode后自动关闭
基本是因为namenode和datanode的clusterID不一致,可以参考《解决hadoop集群中datanode启动后自动关闭的问题》
其他一些特殊异常只能google之了
8.6 no datanode to stop
删除/tmp目录下的
adoop-daemon.sh代码,脚本是通过pid文件来停止hadoop服务的,而集群配置是使用的默认配置,pid文件位于/tmp目录下,对比/tmp目录下hadoop pid文件中的进程id和ps ax查出来的进程id,发现两个进程id不一致,终于找到了问题的根源。
赶紧去更新hadoop的配置吧!
修改hadoop-env.sh中的:HADOOP_PID_DIR = hadoop安装路径
9、运行测试例子
[html]
view plain copy
- [hadoop@master bin]$ ./yarn jar ../share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar randomwriter /home/hadoop/dfs/input/
这里要注意不要用 -jar,不然会报异常“Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/util/ProgramDriver”
[html]
view plain copy
- [hadoop@master bin]$ ./yarn jar ../share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /home/hadoop/dfs/input/ /home/hadoop/dfs/output/
在input下面新建两个文件
[html]
view plain copy
- $mkdir /dfs/input %echo ‘hello,world’ >> input/file1.in
- $echo ‘hello, ruby’ >> input/file2.in
-
- ./bin/hadoop fs -mkdir -p /home/hadoop/dfs/input
- ./bin/hadoop fs –put /home/hadoop/dfs/input /home/hadoop/test/test_wordcount/in
-
- 查看word count的计算结果:
- $bin/hadoop fs -cat /home/hadoop/test/test_wordcount/out/*
- hadoop 1
- hello 1
- ruby