Thread类
Thread类封装了POSIX标准中的多线程机制,提供了一种简单易用的线程模型。Thread类是Iperf的实现中比较重要的类,使Iperf实现多线程并行操作的核心。
Thread类的定义在文件lib/Thread.hpp中,其实现位于lib/Thread.cpp中。
//Thread.hpp class Thread { public: Thread( void ); virtual ~Thread(); // start or stop a thread executing void Start( void ); void Stop( void ); // run is the main loop for this thread // usually this is called by Start(), but may be called // directly for single-threaded applications. virtual void Run( void ) = 0; // wait for this or all threads to complete void Join( void ); static void Joinall( void ); void DeleteSelfAfterRun( void ) { mDeleteSelf = true; } // set a thread to be daemon, so joinall won't wait on it void SetDaemon( void ); // returns the number of user (i.e. not daemon) threads static int NumUserThreads( void ) { return sNum; } static nthread_t GetID( void ); static bool EqualID( nthread_t inLeft, nthread_t inRight ); static nthread_t ZeroID( void ); protected: nthread_t mTID; bool mDeleteSelf; // count of threads; used in joinall static int sNum; static Condition sNum_cond; private: // low level function which calls Run() for the object // this must be static in order to work with pthread_create static void* Run_Wrapper( void* paramPtr ); }; // end class Thread
数据成员说明:
mTID纪录本线程的线程ID;
mDeleteSelf通过方法DeleteSelfAfterRun设置,用来说明是否在线程结束后释放属于该线程的变量;
sNum是一个静态变量,即为所有的Thread实例所共有的。该变量纪录所生成的线程的总数。Thread对象的Joinall方法通过该变量判断所有的Thread实例是否执行结束;
sNum_cond是用来同步对sNum的操作的条件变量,也是一个静态变量。
成员函数说明:
Start方法:
/* ------------------------------------------------------------------- * Start the object's thread execution. Increments thread * count, spawns new thread, and stores thread ID. * ------------------------------------------------------------------- */ void Thread::Start( void ) { if ( EqualID( mTID, ZeroID() ) ) { // increment thread count sNum_cond.Lock(); sNum++; sNum_cond.Unlock(); Thread* ptr = this; #if defined( HAVE_POSIX_THREAD ) // pthreads -- spawn new thread int err = pthread_create( &mTID, NULL, Run_Wrapper, ptr ); FAIL( err != 0, "pthread_create" ); #elif defined( HAVE_WIN32_THREAD ) // Win32 threads -- spawn new thread // Win32 has a thread handle in addition to the thread ID mHandle = CreateThread( NULL, 0, Run_Wrapper, ptr, 0, &mTID ); FAIL_errno( mHandle == NULL, "CreateThread" ); #else // single-threaded -- call Run_Wrapper in this thread Run_Wrapper( ptr ); #endif } } // end Start
首先通过sNum++纪录一个新的线程的产生,之后通过pthread_create系统调用产生一个新的线程。新线程执行Run_Wrapper函数,以指向该Thread实例的ptr指针作为参数。原线程在判断pthread_create是否成功后退出Start函数。
Stop方法:
/* ------------------------------------------------------------------- * Stop the thread immediately. Decrements thread count and * resets the thread ID. * ------------------------------------------------------------------- */ void Thread::Stop( void ) { if ( ! EqualID( mTID, ZeroID() ) ) { // decrement thread count sNum_cond.Lock(); sNum--; sNum_cond.Signal(); sNum_cond.Unlock(); #ifdef HAVE_THREAD nthread_t oldTID = mTID; mTID = ZeroID(); // exit thread #if defined( HAVE_POSIX_THREAD ) // use exit() if called from within this thread // use cancel() if called from a different thread if ( EqualID( pthread_self(), oldTID ) ) { pthread_exit( NULL ); } else { // Cray J90 doesn't have pthread_cancel; Iperf works okay without #ifdef HAVE_PTHREAD_CANCEL pthread_cancel( oldTID ); #endif } #elif defined( HAVE_WIN32_THREAD ) if ( EqualID( GetID(), oldTID ) ) { ExitThread( 0 ); } else { // this is a somewhat dangerous function; it's not // suggested to Stop() threads a lot. TerminateThread( mHandle, 0 ); } #endif #endif } } // end Stop
首先通过sNum--纪录一个线程执行结束,并通过sNum_cond的Signal方法激活此时wait在sNum_cond的线程(某个主线程会调用Joinall方法,等待全部线程的结束,在Joinall方法中通过sNum_cond.Wait() 等待在sNum_cond条件变量上)。若结束的线程是自身,则调用 pthread_exit函数结束,否则调用pthread_cancel函数。注意:传统的exit函数会结束整个进程(即该进程的全部线程)的运行,而pthread_exit函数仅结束该线程的运行。
Run_Wrapper方法:
/* ------------------------------------------------------------------- * Low level function which starts a new thread, called by * Start(). The argument should be a pointer to a Thread object. * Calls the virtual Run() function for that object. * Upon completing, decrements thread count and resets thread ID. * If the object is deallocated immediately after calling Start(), * such as an object created on the stack that has since gone * out-of-scope, this will obviously fail. * [static] * ------------------------------------------------------------------- */ #if defined( HAVE_WIN32_THREAD ) DWORD WINAPI #else void* #endif Thread::Run_Wrapper( void* paramPtr ) { assert( paramPtr != NULL ); Thread* objectPtr = (Thread*) paramPtr; // run (pure virtual function) objectPtr->Run(); #ifdef HAVE_POSIX_THREAD // detach Thread. If someone already joined it will not do anything // If noone has then it will free resources upon return from this // function (Run_Wrapper) pthread_detach(objectPtr->mTID); #endif // set TID to zero, then delete it // the zero TID causes Stop() in the destructor not to do anything objectPtr->mTID = ZeroID(); if ( objectPtr->mDeleteSelf ) { DELETE_PTR( objectPtr ); } // decrement thread count and send condition signal // do this after the object is destroyed, otherwise NT complains sNum_cond.Lock(); sNum--; sNum_cond.Signal(); sNum_cond.Unlock(); return NULL; } // end run_wrapper
该方法是一个外包函数 (wrapper),其主要功能是调用本实例的Run方法。实际上,Run_Wrapper是一个静态成员函数,是为所有的Thread实例所共有的,因此无法使用this指针。调用Run_Wrapper的Thread 是通过参数paramPtr指明具体的Thread实例的。在Run返回之后,通过 pthread_detach使该线程在运行结束以后可以释放资源。Joinall函数是通过监视sNum的数值等待所有线程运行结束的,而并非通过pthread_join函数。在完成清理工作后,Run_Wrapper减少sNum的值,并通过sNum_cond.Signal函数通知在 Joinall中等待的线程。
Run方法:
/*Thread.hpp*/ // run is the main loop for this thread // usually this is called by Start(), but may be called // directly for single-threaded applications. virtual void Run( void ) = 0;
从Run方法的声明中知道,该方法是一个纯虚函数,因此Thread是一个抽象基类,主要作用是为其派生类提供统一的对外接口。在Thread的派生类中,像Iperf中的Server,Client,Speader,Audience,Listener等类,都会为Run提供特定的实现,完成不同的功能,这是对面向对象设计多态特性的运用。Thread函数通过Run方法提供了一个通用的线程接口。
讨论:为什么要通过Run_Wrapper函数间接的调用Run函数?
首先,Thread的各派生类的完成的功能不同,但它们都是Thread的实例,都有一些相同的工作要做,如初始化和清理等。在Run_Wrapper中实现这些作为Thread实例所应有的相同功能,在Run函数中实现派生类各自不同的功能,是比较合理的设计。
更重要的是,由于要通过Pthread_create函数调用Run_Wrapper函数,因此Run_Wrapper函数必须是一个静态成员,无法使用this指针区分运行Run_Wrapper函数的具体实例,也就无法利用多态的特性。而这个问题可以通过把this指针作为Run_Wrapper函数的参数,并在Run_Wrapper中显示调用具有多态特性的Run函数来解决。
这种使用一个wrapper函数的技术为我们提供了一种将C++面向对象编程和传统的Unix系统调用相结合的思路。
Joinall方法和SetDaemon方法:
/* ------------------------------------------------------------------- * Wait for all thread object's execution to complete. Depends on the * thread count being accurate and the threads sending a condition * signal when they terminate. * [static] * ------------------------------------------------------------------- */ void Thread::Joinall( void ) { sNum_cond.Lock(); while ( sNum > 0 ) { sNum_cond.Wait(); } sNum_cond.Unlock(); } // end Joinall /* ------------------------------------------------------------------- * set a thread to be daemon, so joinall won't wait on it * this simply decrements the thread count that joinall uses, * which is not a thorough solution, but works for the moment * ------------------------------------------------------------------- */ void Thread::SetDaemon( void ) { sNum_cond.Lock(); sNum--; sNum_cond.Signal(); sNum_cond.Unlock(); }
由这两个方法的实现可见,Thread类是通过计数器sNum监视运行的线程数的。线程开始前(Start方法中的pthread_create),sNum加1,线程结束后(Stop方法和 Run_Wrapper方法末尾),sNum减1。Joinall通过条件变量类的实例sNum_cond的Wait方法等待sNum的值改变,而SetDaemon的目的是使调用线程不再受主线程Joinall的约束,只是简单的把sNum减1就可以了。